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1/67Agenda

1. Finer Points of Original GAN

2. Evaluating Your GAN

3. Evolution of GAN Architectures

Practice: how to do better than
DCGAN?
Theory: how to improve the original
GAN framework?

4. Evolution of GAN Dynamics

5. Where to Go From Here?

Figure: Imaginary Cards Generated by Chimera Painter by Google AI
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Finer Points of Original GAN

Figure: “Generative Adversarial Networks”, I. Goodfellow et al., 2014



3/67Original GAN

Two interconnected multi-layer perceptrons (MLPs).

Generator:
Gθ : Rm → Rn, z 7→ Gθ(z) (1)

typically m << n, z is sampled from P, a Gaussian distribution
(also write: z ∼ P(z))

Discriminator:

Dw : Rn → [0, 1], v 7→ Dw (v) (2)

v ∈ {x ,Gθ(z)}, x is a real sample from dataset D, assumed to
be sampled from (unknown) Q (also write: x ∼ Q(x))

Want Gθ(z) to be indistinguishable from real x for any z , z
referred to as a noise/latent variable/latent code.

We assume both generator and discriminator are parametric models.
z is a random variable (RV), z is a realization of the RV. Same for x, x .
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Gθz ∼ P (z)

x ∼ Q(x)

Dynamics

Dw

θk+1 wk+1

x̂ ∼ PG(x)

We wish to find θ,w of Gθ and Dw , by solving,

min
θ

max
w

Ex∼Q(x)[log(Dw (x))] + Ez∼P(z)[log(1− Dw (Gθ(z)))] (3)

Sometimes write x̂ = Gθ(z), has induced distribution x̂ ∼ PG (x).

We refer to the saddle function,

L(θ,w) = Ex∼Q(x)[log(Dw (x))]+Ez∼P(z)[log(1−Dw (Gθ(z)))] (4)

as the (original) GAN objective.



5/67A Simple Example: “Dirac GAN”

∞

v

Shifted Dirac delta function:

δv (x) =

{
+∞ x = v

0 else where
(5)

Sifting property: ∫
R
δv (x)f (x)dx = f (v) (6)
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(·)z ∼ δθ(z)

x ∼ δv(x)

Dynamics

1

1 + exp(−w(·))
θk+1 wk+1

x̂ ∼ δθ(x)

Identity Logistic

Dw (x) =
1

1 + exp(−wx)
, x ∼ δv (x)

Gθ(z) = z, z ∼ δθ(z)
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Dw (x) =
1

1 + exp(−wx)
, x ∼ δv (x)

Gθ(z) = z, z ∼ δθ(z)

min
θ∈R

max
w∈R

Ex∼δv (x)[log(Dw (x))] + Ez∼δθ(z)[log(1− Dw (Gθ(z)))]

= min
θ∈R

max
w∈R

∫
R

log(Dw (x))δv (x)dx +

∫
R

log(1− Dw (Gθ(z)))δθ(z)dz

= min
θ∈R

max
w∈R

log(
1

1 + exp(−wv)
) + log(1− 1

1 + exp(−wθ)
)

= min
θ∈R

max
w∈R

log(
1

1 + exp(−wv)
) + log(

1

1 + exp(wθ)
)

= min
θ∈R

max
w∈R

− log(1 + exp(−wv))− log(1 + exp(wθ))

(Exercise: show this objective is concave in θ and concave in w)

Hard: because we want to minimize a concave (non-convex)
function.
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Let’s plot − log(1 + exp(−wv))− log(1 + exp(wθ)), v = −2

Let v = −2, then it can be shown that, (θ?,w?) = (−2, 0).

Observe, D?(v) =
1

1 + exp(−w(−2))

∣∣∣∣
w=w?

=
1

1 + exp(0)
=

1

2



9/67In general, the optimal discriminator D? of original GAN is1,

D?(x) =
Q(x)

Q(x) + PG (x)
,Q(x) = PG (x)

Let w? be optimal weight, then L(θ,w?) is,

= Ex∼Q [log(D?(x))] + Ez∼P(z)[log(1− D?(Gθ(z)))]

= Ex∼Q [log(D?(x))] + Ez∼P

[
log(1− Q(Gθ(z))

Q(Gθ(z)) + PG (Gθ(z))
)

]
= Ex∼Q [log(D?(x))] + Ez∼P

[
log(

PG (Gθ(z))

Q(Gθ(z)) + PG (Gθ(z))
)

]
= Ex∼Q

[
log(

Q(x)

Q(x) + PG (x)
)

]
+ Ex̂∼PG

[
log(

PG (x)

Q(x) + PG (x)
)

]
=

∫
R
Q(x) log(

Q(x)

Q(x) + PG (x)
)dx +

∫
R
PG (x) log(

PG (x)

Q(x) + PG (x)
)dx

1
“Generative Adversarial Nets”, Goodfellow et al., 2014
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L(θ,w?) = DKL(Q,Q + PG ) + DKL(PG ,Q + PG )

= − log(4) + DKL(Q,
Q + PG

2
) + DKL(PG ,

Q + PG

2
)

= − log(4) + 2DJS(Q,PG )

DJS(Q,PG ) :=
1

2
(DKL(Q,

Q + PG

2
) + DKL(PG ,

Q + PG

2
)) is

the Jensen-Shannon divergence

DKL(Q,P) :=
∫
Q(x) log(Q(x)/P(x))dx is the (continuous)

Kullback-Leibler divergence.

When D? is optimal, the GAN problem reduces to minimizing
DJS(Q,PG ). The optimal value is L(θ?,w?) = − log(4).

Extremely important insight - spark of many research progress.



11/67“Discriminator/Generator Loss”

Assume both G and D wish to minimize their loss. The
discriminator and generator losses (“cost functions”) are:

LD(w ; θ) := −L(θ,w)

= −Ex∼Q(x)[log(Dw (x))]− Ez∼P(z)[log(1− Dw (Gθ(z)))]

LG (θ;w) := L(θ,w)

= Ex∼Q(x)[log(Dw (x))] + Ez∼P(z)[log(1− Dw (Gθ(z)))]

This is a two-player zero-sum game: LD(w ; θ) + LG (θ;w) = 0
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LG (θ;w) := L(θ,w)

= Ex∼Q(x)[log(Dw (x))] + Ez∼P(z)[log(1− Dw (Gθ(z)))]

This is a two-player zero-sum game: LD(w ; θ) + LG (θ;w) = 0

Note that GAN folks go a step further and removes the
Ex∼Q(x)[log(Dw (x))] term from LG (no θ dependence),

LG (θ;w) := Ez∼P(z)[log(1− Dw (Gθ(z)))] (7)



12/67Min-Max vs Non-Saturating

LD(w ; θ) = −Ex∼Q(x)[log(Dw (x))]− Ez∼P(z)[log(1− Dw (Gθ(z)))]

LG (θ;w) = Ez∼P(z)[log(1− Dw (Gθ(z)))]

We call this the Min-Max GAN.
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But, what was actually implemented is Non-Saturating GAN
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This leads to quite different learning dynamics

Min-Max GAN

wk+1 = wk +
1

B

∑B
i=1∇w log(Dw (x (i))) + log(1− Dw (Gθ(z(i))))

θk+1 = θk −
1

B

∑B
i=1∇θ log(1− Dw (Gθ(z(i)))), z(i) resampled

Non-Saturating GAN

wk+1 = wk +
1

B

∑B
i=1∇w log(Dw (x (i))) + log(1− Dw (Gθ(z(i))))

θk+1 = θk +
1

B

∑B
i=1∇θ log(Dw (Gθ(z(i)))), z(i) resampled

w is sometimes updated several times before θ is updated
(“multi-looping”).



14/67In practice, LD(w ; θ),LG (θ;w) are built by using the binary cross
entropy with logits loss (BCE-LL) with labels 0 (fake) or 1 (real).
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H (x , y) = −[yn log(θ(xn)) + (1− yn) log(1− θ(xn))] (8)
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Recall given two vectors x = (xn), y = (yn) ∈ Rn, BCE-LL is,

H (x , y) = −[yn log(θ(xn)) + (1− yn) log(1− θ(xn))] (8)

Also, let the discriminator be decomposed as Dw (x) = θ(hw (x)).

LD(w ; θ) ≈ 1

B

B∑
i=1

H (1, hw (x (i))) + H (0, hw (Gθ(z(i))))

=
1

B

∑B
i=1− log(θ(hw (x (i))))− log(1− θ(hw (Gθ(z(i)))))

=
1

B

∑B
i=1− log(Dw (x (i)))− log(1− Dw (Gθ(z(i))))

LG (θ;w) ≈ 1

B

∑B
i=1 H (1, θ(hw (Gθ(z(i)))) =

1

B

∑B
i=1− log(Dw (Gθ(z(i))))
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Evaluating Your GAN

Figure: “Improved Precision and Recall Metric for Assessing Generative Models”, T. Karras et al., 2019



16/67Inception Score
a metric that shown to correlate well with human scoring of
the realism of generated images from the CIFAR-10 dataset.

Generate a batch of images {x̂ (i)}Bi=1, run through Inception
V32 to get {p(y |x̂ (i))}Bi=1, p(y |x̂ (i)) ∈ [0, 1]1000. Calculate the

inception score (IS) as,

IS = exp

[
1

B

∑B
i=1 DKL(p(y |x̂ (i)),

1

B

∑B
i=1 p(y |x̂ (i)))

]
∈ [1, 1000]

where DKL(v ,w) =
∑N

n=1 vn log(vn/wn) is the “discrete” KL
divergence.

The higher the better.

2
“Going Deeper with Convolutions”, Szegedy et al. 2015

The IS formula is taken from “A Note on the Inception Score”, Barratt and Sharma, 2018.

“Improved Techniques for Training GANs”, Salimans et al. 2016
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Inception V3 is trained on very a large set of (1000 classes)
images, therefore, it should be able to tell if,

there exists a single object in the image via the softmax
probabilities

the generator is able to generate a wide variety of images.

A higher score intuitively corresponds to achieving these objectives.
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Figure: Samples generated by BigGAN at 512× 512 resolution

IS = 241.5



19/67

IS = 900.15

Recent papers3 have pointed out some problems with using IS

3
Figure: “A Note on the Inception Score”, Barratt and Sharma, 2018.
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Draw a batch of real {x (i)} and generated images {x̂ (i)}.
Embed {x (i)} and {x̂ (i)} by using some specific layer of the
Inception V3 (e.g., until after the last activation layer), then
take statistics of each batch.

FID is the “Wasserstein-2 distance” between two multivariate
Gaussians, N (µ1,Σ1) and N (µ2,Σ2).

FID = ‖µ1 − µ2‖2
2 + tr(Σ1 + Σ2 − 2

√
Σ1Σ2)

For 1D Gaussians, FID = (µ1 − µ2)2 + (σ2
X + σ2

Y − 2σXσY ).

Obviously closer to zero the better.

Compares the fake vs real images based on their distributions
(instead just looking at fake images as with IS).

“GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium”, M. Heusel et al.,
2018



21/67FID Is Not Perfect Either

Figure: Both set of images have FID 3.27

Other metrics you might want to try:

Precision and Recall: kNN based approach

Sliced Wasserstein Distance (lower = better)

Perceptual path length scores (lower = better)

See “Pros and Cons of GAN Evaluation Measures”, Borji, 2018, for a survey of metrics



22/67

Evolution of GAN Architectures

Part I: Practice

https://www.youtube.com/watch?v=9QuDh3W3lOY



23/67DCGAN (Deep Convolutional GAN)4

The original GAN only used MLPs. DCGAN is one of the first
GANs utilizing CNN that worked well.

List of best practices circa 2015,

1. Replace pooling layers with strided convolutions (Dw ) and
fractional-strided convolutions (Gθ), so no pooling layers.

2. Use batchnorm in both Gθ and Dw .
3. Remove FC hidden layers for deeper architectures.
4. ReLU in Gθ except for the output, which uses Tanh.
5. LeakyReLU in Dw for all layers (except the output) and no

activation at the output

Essential idea is to avoid “sparse” gradients.

In practical implementations, people relax one of more of the
above (e.g., use regular convolution)

4
”Unsupervised representation learning with deep convolutional generative adversarial networks”, A. Radford,

L. Metz, and S. Chintala, 2015
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Figure: IS 6.69, FID 35.6

DCGAN performed well on small images, but how to generate
larger more complicated images?
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A famous GAN that generated really good quality images

List of best practices circa 2018,

1. Use ResNet for both Gθ and Dw .
2. Skip connections from latent to intermediate layers of Gθ

(“skip-z”)
3. 2 Dw updates per Gθ update (Double-looping)
4. Moving average for weights
5. Orthogonal regularization or pairwise cosine similarity
6. Non-local blocks

Essential idea is to capture long-term dependencies.
“Large scale Gan Training For High Fidelity Natural Image Synthesis”, A. Brock et al., 2018.



26/67

BigGAN had an interesting idea called “truncation trick”

Extremely simple idea: after GAN is trained, sample images
from noise that are close to the mean of the distribution.

This ensures generation from distribution that the generator
performs good on.

But this also means you have less variety in the generated
images.



27/67BigGAN produced nice images, but it cannot tackle the unforgiving
task of human face generation

Figure: IS 232.5, FID 8.1

Your brain has a dedicated region for facial recognition, the
fusiform gyrus. You are trying to fool millions of years of evolution.



28/67Progressive Growing of GANs

Here is an idea: instead of learning all aspects of facial features at
once, learn from coarse (4× 4) to fine (1024× 1024).

Figure: FID 7.79 on CelebA-HQ, 8.04 FFHQ

“Progressive Growing of GANs for Improved Quality, Stability and Variation”, Karras, Aila, Laine, Lehtinen,
2018
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StyleGAN takes the progressive growing idea further through a
Style-based generator.

Note that 4× 4× 512 is a constant tensor of ones5. Not updated
during training. It is like a growing canvas which we paint on.

5
https://github.com/NVlabs/stylegan/blob/master/training/networks_stylegan.py line 507

“A Style-Based Generator Architecture for Generative Adversarial Networks”, Karras et al, 2018.

https://github.com/NVlabs/stylegan/blob/master/training/networks_stylegan.py


30/67

Also uses truncation trick similar to BigGAN, but in W space:

1. Calculate “average face” w = Ez∼P(z)[f (z)], f is the mapping
network.

2. Scale deviation from average face w̃ = w + ψ(w − w), where
ψ is the truncation variable (default setting ψ = 0.7).

Similar effect as BigGAN, avoids generation from latent variables
that were unseen (rarely seen) by generator.



31/67Can You Spot the Artifacts?
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Authors found above artifacts (in particular, the “blobs”) are
due to the AdaIN and progressive growing architecture

Added weight demodulation layer in place of AdaIN

Added a generator with skip connection and a discriminator
with residual blocks place of progressive training.

“Analyzing and Improving the Image Quality of StyleGAN”, T. Karras, 2020



33/67StyleGAN2-Ada

StyleGAN requires order O(105)−O(106) images to train.

Data augmentation techniques (flipping, cropping, rotation,
noise) prone to “leaking”: generator will generate augmented
images as well.

Idea: Augment the real images AND the fake images.
Let T be an augmentation, x real, x̂ fake, then, train so that

T (x) = T (x̂) (9)

Suppose that T is invertible, then x = x̂.

“Training Generative Adversarial Networks with Limited Data”, T. Karras, et al. 2020
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Solves two challenges:

T non-invertible in general; can be made “invertible” through
selective skipping, which is controlled by some (probability)
p ∈ [0, 1]

Tuning of p is not straightforward, instead make p adaptive
(this is the “ada” part) based on the performance of Dw . If it
is performing too well, make p larger, otherwise, p smaller.

Details are a bit technical, hear it directly from the authors:
https://www.youtube.com/watch?v=hOx9NBwDkHY

https://www.youtube.com/watch?v=hOx9NBwDkHY
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Evolution of GAN Architectures

Part II: Theory

Figure: “f -GAN: Training Generative Neural Samplers using Variational Divergence Minimization”, S.
Nowozin et al., 2016



36/67From your lecture, MM-GAN loss function is prone to vanishing
gradients. NS-GAN fixes this issue a bit.
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Observe the loss saturates when Dw (Gθ(z)))→ 1, hence providing
no feedback to account for correctly classified generated images
that may look different than the real images.

Early authors sought to combat this saturation issue with new
objective functions.



37/67Least Squares GAN
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min
w
LDw (w ; θ) =

1

2
Ex∼Q(x)[(Dw (x)− 1)2] +

1

2
Ez∼P(z)[(Dw (Gθ(z)))2]

min
θ
LGθ(θ;w) =

1

2
Ez∼P(z)[(Dw (Gθ(z))− 1)2]

Penalize correctly generated samples if it doesn’t quite look similar
to the real images.

“On the Effectiveness of Least Squares Generative Adversarial Networks”, X. Mao et al, 2018
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LSGAN has an additional insight: at optimal D? it is minimizing
the Pearson Chi-square divergence (as opposed to the Jensen
Shannon Divergence for the original GAN),

L(θ,w?) =
1

2

∫
R

(2PG (x)− (Q(x) + PG (x)))2

PG (x) + Q(x)
dx

=
1

2
χ2(PG (x) + Q(x), 2PG (x))

What if we put divergence minimization front and center in our
GAN design?



39/67WGAN (Wasserstein GAN)

Directly considers minimization of the Wasserstein-1 distance,

D(Q,PG ) = min
γ∈Γ

E[‖x− x̂‖], x ∼ Q(x), x̂ ∼ PG (x) (10)

where Γ is the set of all joint distributions whose marginals are
Q, PG . This is also known as Earth Mover distance.

By the so-called Kantorovich-Rubinstein duality,

D(Q,PG ) = max
w

Ex∼Q(x)[Dw (x)]−Ez∼P(z)[Dw (Gθ(z))] (11)

where the “critic” Dw is any 1-Lipschitz function.6

Minimizing over θ yields the WGAN objective,

L(θ,w) = min
θ

max
w

Ex∼Q(x)[Dw (x)]−Ez∼P(z)[Dw (Gθ(z))] (12)

Also attempts to avoids the vanishing gradient problem.
6

It is called a critic as opposed to a discriminator because it does not output {0, 1}.

“Wasserstein GAN”, M. Arjovsky, S. Chintala, L. Bottou, 2017. For more details about derivations: see
https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html
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Q, PG . This is also known as Earth Mover distance.

By the so-called Kantorovich-Rubinstein duality,

D(Q,PG ) = max
w

Ex∼Q(x)[Dw (x)]−Ez∼P(z)[Dw (Gθ(z))] (11)

where the “critic” Dw is any 1-Lipschitz function.6

Minimizing over θ yields the WGAN objective,

L(θ,w) = min
θ

max
w

Ex∼Q(x)[Dw (x)]−Ez∼P(z)[Dw (Gθ(z))] (12)

Also attempts to avoids the vanishing gradient problem.
6

It is called a critic as opposed to a discriminator because it does not output {0, 1}.

“Wasserstein GAN”, M. Arjovsky, S. Chintala, L. Bottou, 2017. For more details about derivations: see
https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html
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40/67WGAN became a favorite among people who study games
(e.g., me) because it leads to very tractable toy examples.

min
θ

max
w

Ex∼Q(x)[Dw (x)]− Ez∼P(z)[Dw (Gθ(z))] (13)

Exercise: show Dw is 1-Lipschitz for ‖w‖2 ≤ 1

This example was studied by “Training GANs with Optimism” by C. Daskalakis et al., 2018 in the WGAN
context
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min
θ

max
w

Ex∼Q(x)[Dw (x)]− Ez∼P(z)[Dw (Gθ(z))] (13)

Example Dw (x) = w>x, x ∼ N (µ,Σ)

Gθ(z) = z− θ, z ∼ N (0, I)

Ex(Dw (x))− Ez(Dw (Gθ(z))) = w>Ex∼N (µ,Σ)(x)− Ez∼N (0,I)(w(z− θ))

= w(µ+ θ)

=⇒ min
θ

max
w

w>(µ+ θ),w? = 0, θ? = µ.

When µ = 0,
min
θ

max
w

w>θ

We will come back to this important example.

Exercise: show Dw is 1-Lipschitz for ‖w‖2 ≤ 1

This example was studied by “Training GANs with Optimism” by C. Daskalakis et al., 2018 in the WGAN
context



41/67WGAN-GP (Wasserstein GAN with Gradient Penalty)

WGAN encourages 1-Lipschitzness clipping all weights to lie
in [−c , c]. As authors point out, this is not desirable.

Instead, use Gradient Penalty, which penalizes norm that are
greater than 1.

min
θ

max
w

Ex∼Q(x)[Dw (x)]− Ez∼P(z)[Dw (Gθ(z))]

+ λEx∼Q(x)[(‖∇Dw (x)‖2 − 1)2]
(14)

where x = εx + (1− ε)Gθ(z) ∼ Q(x), ε ∈ [0, 1].

Interpolation allows for a broader range of Lipschitz
enforcement.

“Improved Training of Wasserstein GANs”, Gulrajani et al., 2017.
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43/67f -GAN

Instead of minimizing a particular divergence function,
minimize a general one: the f -divergence7,

Df (Q,PG ) =

∫
PG (x)f

[
Q(x)

PG (x)

]
dx (15)

where f : R>0 → R is a convex, continuous, f (1) = 0. This
captures KL, Chi-square, Jensen-Shannon divergence, etc.

Then it can be shown,

Df (Q,PG ) ≥ max
w

Ex∼Q(x)[Dw (x)] + Ez∼P(z)[−f ?(Dw (Gθ(z)))]

for some function w , where f ? is the Fenchel conjugate of f .

7
f stands for Fenchel, a famous mathematician. The Fenchel conjugate is one of the most useful and used

ideas in all of mathematics. Read “WHAT IS a Fenchel conjugate?” by H. H. Bauschke and Y. Lucet, 2012.

For your interest, the Fenchel conjugate is defined as f ?(x) = maxu∈domain(f ) u
>x − f (u)

f -GAN: Training Generative Neural Samplers using Variational Divergence Minimization, Nowozin, 2016



43/67f -GAN

Instead of minimizing a particular divergence function,
minimize a general one: the f -divergence7,

Df (Q,PG ) =

∫
PG (x)f

[
Q(x)

PG (x)

]
dx (15)

where f : R>0 → R is a convex, continuous, f (1) = 0. This
captures KL, Chi-square, Jensen-Shannon divergence, etc.

Then it can be shown,

Df (Q,PG ) ≥ max
w

Ex∼Q(x)[Dw (x)] + Ez∼P(z)[−f ?(Dw (Gθ(z)))]

for some function w , where f ? is the Fenchel conjugate of f .

7
f stands for Fenchel, a famous mathematician. The Fenchel conjugate is one of the most useful and used

ideas in all of mathematics. Read “WHAT IS a Fenchel conjugate?” by H. H. Bauschke and Y. Lucet, 2012.

For your interest, the Fenchel conjugate is defined as f ?(x) = maxu∈domain(f ) u
>x − f (u)

f -GAN: Training Generative Neural Samplers using Variational Divergence Minimization, Nowozin, 2016



44/67

Df (Q,PG ) ≥ max
w

Ex∼Q(x)[Dw (x)] + Ez∼P(z)[−f ?(Dw (Gθ(z)))]

Observe minimizing over θ yields a generalized GAN objective:

Let Dw (x) = θ(hw (x)), where θ is an arbitrary activation
function of the last layer, hw be the rest of the network.

f -GAN objective,

L(θ,w) = Ex∼Q(x)[θ(hw (x))] + Ez∼P(z)[−f ?(θ(hw (Gθ(z))))]

For θ(v) = − log(1 + exp(−v)), f ?(t) = − log(1− exp(t)),
then (try show this),

Ex∼Q(x)[− log(1+exp(−hw (x)))]−Ez∼P(z)[log(1+exp(hw (Gθ(z)))]

But this is exactly our GAN objective (show this).



44/67

Df (Q,PG ) ≥ max
w

Ex∼Q(x)[Dw (x)] + Ez∼P(z)[−f ?(Dw (Gθ(z)))]

Observe minimizing over θ yields a generalized GAN objective:

Let Dw (x) = θ(hw (x)), where θ is an arbitrary activation
function of the last layer, hw be the rest of the network.

f -GAN objective,

L(θ,w) = Ex∼Q(x)[θ(hw (x))] + Ez∼P(z)[−f ?(θ(hw (Gθ(z))))]

For θ(v) = − log(1 + exp(−v)), f ?(t) = − log(1− exp(t)),
then (try show this),

Ex∼Q(x)[− log(1+exp(−hw (x)))]−Ez∼P(z)[log(1+exp(hw (Gθ(z)))]

But this is exactly our GAN objective (show this).



44/67

Df (Q,PG ) ≥ max
w

Ex∼Q(x)[Dw (x)] + Ez∼P(z)[−f ?(Dw (Gθ(z)))]

Observe minimizing over θ yields a generalized GAN objective:

Let Dw (x) = θ(hw (x)), where θ is an arbitrary activation
function of the last layer, hw be the rest of the network.

f -GAN objective,

L(θ,w) = Ex∼Q(x)[θ(hw (x))] + Ez∼P(z)[−f ?(θ(hw (Gθ(z))))]

For θ(v) = − log(1 + exp(−v)), f ?(t) = − log(1− exp(t)),
then (try show this),

Ex∼Q(x)[− log(1+exp(−hw (x)))]−Ez∼P(z)[log(1+exp(hw (Gθ(z)))]

But this is exactly our GAN objective (show this).



45/67The GAN Zoo
Name Saddle Functions (min θ, max w)
MMGAN Ex∼Q(x)[log(Dw (x))] + Ez∼P(z)[log(1− Dw (Gθ(z)))]
WGAN Ex∼Q(x)[Dw (x)]− Ez∼P(z)[Dw (Gθ(z))] = W
WGAN-
GP

W + λEx∼Q(x)(‖∇Dw (x)‖2− 1)2, x = εx+ (1− ε)Gθ(z)

f -GAN Ex∼Q(x)[θ(hw (x))] + Ez∼P(z)[−f ?(θ(hw (G (z))))]

Name Individual Losses LD ,LG
NSGAN LD = −Ex∼Q(x)[log(Dw (x))]−Ez∼P(z)[log(1−Dw (Gθ(z)))]

LG = −Ez∼P(z)[log(Dw (Gθ(z)))]

LSGAN LD =
1

2
Ex∼Q(x)[(Dw (x)− 1)2] +

1

2
Ez∼P(z)[(Dw (Gθ(z)))2]

LG =
1

2
Ez∼P(z)[(Dw (Gθ(z))− 1)2]

For more examples, see: “Are GANs Created Equal? A Large-Scale Study”, Lucic et al., 2018
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Evolution of GAN Dynamics

Figure: (Top) “Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile” -

Mertikopoulos et al., 2018 (Bottom) “The limits of min-max optimization algorithms: convergence to spurious

non-critical sets” - Hsieh et al., 2020.



47/67Problems with Training GAN
Mode collapse: generator produces from a localized region of
the true targets distribution

Instability: “The more you train, the worse it gets”

Obviously has something to do with weight update. How to fix
these issues?

(Top) “Least Squares Generative Adversarial Networks”, Mao et al., 2017, (Bottom) “GANs May Have No
Nash Equilibria”, Farnia, et al., 2020



48/67Back to the Basics: The Bilinear Zero-Sum Game

min
θ∈R

max
w∈R
L(θ,w) = θ>w (16)

Exists a unique saddle point at (θ?,w?) = (0, 0)

Coincides with some WGAN formulation (as we have seen)

Many neural networks at the last layer is linear

If dynamics oscillates/diverges in simple game, then intuitively
it oscillates/diverges in more complicated games

Gradient descent ascent (GDA)8 (≈ Algo for Training Min-Max
GAN): ε is the step-size.

θk+1 = θk − ε∇θ L(θk ,wk)

wk+1 = wk + ε∇w L(θk ,wk)

For us, ∇θ L = w ,∇w L = θ

8
“Iterative methods for concave programming”, H. Uzawa, 1958
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θk+1 = θk − εwk wk+1 = wk + εθk

For GDA (show this):

‖θk+1‖2
2 + ‖wk+1‖2

2 = (1 + ε2)(‖θk‖2
2 + ‖wk‖2

2)

If (1 + ε2) > 1, then the magnitude of θk+1,wk+1 blows up
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Figure: GDA: (θ0,w0) = (10, 10) (Left) ε = 0.1 (Center) ε = 0.5 (Right)
ε = 1. All divergent, Spiraling Out.



50/67What if We “Alternate”?
Instead of,

θk+1 = θk − εwk

wk+1 = wk + εθk

Do this (alternating),

θk+1 = θk − εwk

wk+1 = wk + εθk+1
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Figure: Alternating GDA: (θ0,w0) = (10, 10) (Left) ε = 0.1 (Center)
ε = 0.5 (Right) ε = 1. Periodic orbits or limit cycles (Poincaré, 1882).



51/67A Simple Technique: Averaging

Moving Average (off-line) 9:

wMA
k =

1

k

∑k
j=1 wj (17)

Moving Average (online):

wMA
k =

k − 1

k
wMA
k−1 +

1

k
wk (18)

Exponential Moving Average (online):

wMA
k = βwMA

k−1 + (1− β)wk , β > 0 (19)

9
Introduced by Bruck, Nemirovskii, et al. in the optimization literature, independently and extensively studied

in game theory, e.g., “Learning in games via reinforcement learning and regularization”, Mertikopoulos and
Sandholm, 2016, “Time-Averaged Replicator and Best-Reply Dynamics”, Hofbauer et al., 2009, “Time Averages
for Heteroclinic Attractors”, Gaunersdorfer, et al. 1992.
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Figure: MA for Alternating GDA: (θ0,w0) = (10, 10) (Left) ε = 0.1
(Center) ε = 0.5 (Right) ε = 1
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Figure: MA for Simultaneous GDA (Orange) vs Original Trajectories
(Blue): (θ0,w0) = (10, 10) (Left) ε = 0.1 (Center) ε = 0.5 (Right) ε = 1.
All divergent.
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ε = 0.1 (Center) ε = 0.5 (Right) ε = 1. All divergent.



54/67For non-convex, non-concave problems, couple it with ADAM.{
wk , θk ← ADAM(LD ,LG )

wEMA
k = βwEMA

k−1 + (1− β)wk θEMA
k = βθEMA

k−1 + (1− β)θk

Figure: CIFAR-10 FID and IS score for Original GAN10.

Has been used in BigGAN, Progressive Growing of GAN, etc.

But how do we get convergence of the actual trajectory?

10
“The Unusual Effectiveness of Averaging in GAN Training” - Yazıcı et al., 2018



55/67Proximal Point Update

Proximal Point update11 is,

θk+1 = θk − ε∇w L(θk+1,wk+1) wk+1 = wk + ε∇θ L(θk+1,wk+1)

Note that the gradient is taken at k + 1 step, so we need to invert
the equation to calculate θk+1,wk+1.

For bilinear ZS game, ∇w L = θ,∇θ L = w , (show the following),

θk+1 = θk − εwk+1 =⇒ θk+1 =
1

1 + ε2
(θk − εwk)

wk+1 = wk + εθk+1 =⇒ wk+1 =
1

1 + ε2
(wk + εθk)

11
“Brève communication. Régularisation d’inéquations variationnelles par approximations successives”, B.

Martinet, 1970



56/67θk+1 =
1

1 + ε2
(θk − εwk) wk+1 =

1

1 + ε2
(wk + εθk)

For Proximal Point update (show this):

‖θk+1‖2
2 + ‖wk+1‖2

2 =
1

1 + ε2
(‖θk‖2

2 + ‖wk‖2
2)

We have convergence for 1/(1 + ε2) < 1 !
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Figure: (θ0,w0) = (10, 10) (Left) ε = 0.1 (Center) ε = 0.5 (Right) ε = 1

But in general, the inversion procedure is hard. How to relax?



57/67Optimistic GDA/GDA with Negative Momentum

Given the Proximal Point update,

θk+1 = θk − ε∇θ L(θk+1,wk+1)

wk+1 = wk + ε∇w L(θk+1,wk+1)

Make the approximation ∇Lk+1 ≈ ∇Lk +(∇Lk −∇Lk−1), we
obtain the Optimistic gradient descent ascent (OGDA)12:

θk+1 = θk − ε∇θ L(θk ,wk) + ε(∇θ L(θk−1,wk−1)−∇θ L(θk ,wk))

wk+1 = wk + ε∇w L(θk ,wk)− ε(∇w L(θk−1,wk−1)−∇w L(θk ,wk)),

θ−1 = θ0,w−1 = w0.

For our bilinear zero-sum game, OGDA becomes,

θk+1 = θk − 2εwk + εwk−1 wk+1 = wk + 2εθk − εθk−1

12
“A modification of the Arrow-Hurwicz method for search of saddle point”, L. D. Popov, 1980



58/67Extragradient

Given the Proximal Point update,

θk+1 = θk − ε∇θ L(θk+1,wk+1)

wk+1 = wk + ε∇w L(θk+1,wk+1)

Can re-write as,

θk+1 = θk − ε∇θ L(θk − ε∇θ L(θk+1,wk+1),wk + ε∇w L(θk+1,wk+1))

wk+1 = wk + ε∇w L(θk − ε∇θ L(θk+1,wk+1),wk + ε∇w L(θk+1,wk+1))

Make the approximation ∇Lk+1 ≈ ∇Lk ,

θk+1 = θk − ε∇θ L(θk − ε∇θ L(θk ,wk),wk + ε∇w L(θk ,wk))

wk+1 = wk + ε∇w L(θk − ε∇θ L(θk ,wk),wk + ε∇w L(θk ,wk))

This is the extragradient algorithm (EG) 13

13
“The extragradient method for finding saddle points and other problems”, G. M. Korpelevich, 1976
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Figure: Bilinear Zero-Sum Game

Remember our “hard” Dirac GAN game from the beginning.

Figure: Dirac GAN

Figure: (Top) “A Unified Analysis of Extra-gradient and Optimistic Gradient Methods for Saddle Point
Problems: Proximal Point Approach”, A. Mokhtari, A. Ozdaglar, S. Pattathil, 2019. (Bottom) “A Variational
Inequality Perspective on Generative Adversarial Networks”, G. Gidel, H. Berard, G. Vignoud, P. Vincent, S.
Lacoste-Julien, 2018



60/67Other Dynamics/Techniques

(Optimistic) Mirror Descent14: essentially a generalization of
GDA to constrained setting.

“Two Time-Scale Method”15: GDA but with added noise.

Methods based on Game Hessian/Game Jacobian, e.g.,
consensus optimization16. CS/ML folks may have the most
impact here.

Open question: is it true that more complicated the game =⇒
more complicated dynamics?

14
“Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile”, P. Mertikopoulos et

al., 2018

See also: “Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz
continuous monotone operators and smooth convex-concave saddle point problems”, A. Nemirovski, 2004

15
“GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium”, M. Heusel et al.,

2018

See also: “Stochastic Approximation with Two Time Scales”, V. Borkar, 1997
16

“The Numerics of GANs”, Mescheder, et al., 2018



61/67Where do I go from here?

Some ideas:

Combine idea with computer graphics (heavily explored)

Come up with a new objective function that makes sense
(heavily explored, e.g., f -GAN.)

Come up with a new training technique that work well in
non-convex/non-concave domain (hard)

Pick an “outside of the box” application, particle physics
(large Hadron collider), dentistry (Personalized
GANufacturing) (plenty of opportunities left here)

Combine GAN with other domains of learning, e.g., imitation
learning (GAIL) (a bit unexplored here)

Put GAN on firm game-theoretic grounds (very
under-explored)



62/67So What Should You Name Your GAN?

Some ideas that are already taken:

VEEGAN https://arxiv.org/abs/1705.07761

(Lady) GAGAN
http://jeankossaifi.com/pages/gagan.html

DRAGAN “How to train your DRAGAN”
https://arxiv.org/abs/1705.07215v1

GANdalf https://arxiv.org/abs/2008.04396

GANGs https://arxiv.org/abs/1712.00679

Potential ideas (?):

GANGNam, LOGAN, PAGAN, SLOGAN

The catch: if you name it, you will have to present it.

https://arxiv.org/abs/1705.07761
http://jeankossaifi.com/pages/gagan.html
https://arxiv.org/abs/1705.07215v1
https://arxiv.org/abs/2008.04396
https://arxiv.org/abs/1712.00679


63/67Parting Message

Tremendous challenges + opportunities still remain

Be thorough with literature review: GANs are new but game
and dynamical system theory are ancient

“...the great watershed in optimization isn’t between lin-
earity and nonlinearity, but convexity and nonconvexity.” -
R. Tyrrell Rockafellar, 1993

So, to You: “What is the great watershed in games + GAN?”

I view the current era as focused on pattern recogni-
tion...So what’s next? I would call this the era of markets.
So it’s not just one agent making decisions in the classical
AI sense...but a huge interconnected, planetary scale web
of data, agents and decisions. – Michael I. Jordan, Prof.
UC Berkeley, 2020

Good luck!
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Appendix

Figure: Imaginary Image Generated by Chimera Painter by Google AI



65/67Appendix: Other Cool GANs

Cool GANs Architectures

LapGAN, Coupled GAN, BiGAN, Big BiGAN, SAGAN,
ProGAN

Cool GAN Objectives

CycleGAN, DiscoGAN, PairedCycleGAN, StarGAN,
ComboGAN, SRGAN, OTGAN, SNGAN

GAN for Video Generation

Temporal GAN (TGAN), VGAN, MoCoGAN, TGANv2

GAN That Generates What You Tell It To

Conditional GAN, Auxiliary Classifier GAN, Info GAN, Pix2Pix

GAN That Addresses Mode Collapse

Unrolled GAN, VEEGAN, PacGAN



66/67Appendix: “Weird”/“Cool” GAN Websites

StyleGAN Related

https://www.whichfaceisreal.com/

https://www.thispersondoesnotexist.com

http://thesecatsdonotexist.com/

https://www.thiswaifudoesnotexist.net/

https://www.artbreeder.com/

Sketch To Painting

https://affinelayer.com/pixsrv/

http://gandissect.res.ibm.com/ganpaint.html https:

//storage.googleapis.com/chimera-painter/index.html

http://nvidia-research-mingyuliu.com/gaugan/

Digital Art Using GAN
http://www.obvious-art.com/ukiyo/index.html

https://refikanadol.com/

https://www.whichfaceisreal.com/
https://www.thispersondoesnotexist.com
http://thesecatsdonotexist.com/
https://www.thiswaifudoesnotexist.net/
https://www.artbreeder.com/
https://affinelayer.com/pixsrv/
http://gandissect.res.ibm.com/ganpaint.html
https://storage.googleapis.com/chimera-painter/index.html
https://storage.googleapis.com/chimera-painter/index.html
http://nvidia-research-mingyuliu.com/gaugan/
http://www.obvious-art.com/ukiyo/index.html
https://refikanadol.com/


67/67Appendix: Some Resources if You Are Interested in Games

Conference and Workshops:

1. NeurIPS: Smooth Games Optimization and Machine Learning
Workshop, Bridging Game Theory & Deep Learning

2. Fields Institute Workshop on Dynamics, Optimization and
Variational Analysis in Applied Games

3. Games, Dynamics and Optimization (GDO)

4. IEEE Control and Decision Conference (CDC)


