
Natural Language Processing

CSC413/2516



Big Picture

• Central to human intelligence.

• Tremendous practical value.

• Colossal developments recently.

1



Goal of This Tutorial

• Basic NLP literacy.

• Getting up to date with recent developments.

I Architectures

I Language tasks

I Tremendous developments in the field recently!

• Know where to look at if you’re starting an NLP project

2



Language Models

• A statistical model that assigns probabilities to the words in a sentences.

• Most commonly: Given previous words, what should the next one be?

• Neural language model: Model the probability of words given others using

neural networks.

3



Architectures

Which architecture is most suitable?

4



Recurrent Architectures

• We can use recurrent architectures.

• LSTM, GRU ...

• Great for variable length inputs, like sentences.

5



Recurrent Architectures

What are some of the problems with recurrent architectures?

• Not parallelizable across instances.

• Cannot model long dependences.

• Optimization difficulties (vanishing gradients).

6



Recurrent Architectures

What are some of the problems with recurrent architectures?

• Not parallelizable across instances.

• Cannot model long dependences.

• Optimization difficulties (vanishing gradients).

6



We’d like an architectural primitive that is:

• Ideally feed-forward

• Can facilitate between-token interactions

• Can model long dependences easily.

Attention to the rescue!

• There are many forms of attention. Today we’ll focus on

scaled dot product attention.

7



Attention

• Three inputs: queries, keys and values.

• ”Return a combination of the values based on the similarities between keys and

queries”.

• Dimensionalities:

I Q ∈ Rnqxdkq

I K ∈ Rnkvxdkq

I V ∈ Rnkvxdv

•

A(Q,K ,V ) = softmax(
QKT√
dkq

)V

8



Attention

Quiz!

• True of False: The dimensionality of queries have to match the dimensionality of

the keys.

TRUE

• True or False: The number of keys have to match the number of values. TRUE

• True or False: The number of keys have to match the number of queries. FALSE

• Dimensionalities:

I Q ∈ Rnqxdkq

I K ∈ Rnkvxdkq

I V ∈ Rnkvxdv

9



Attention

Quiz!

• True of False: The dimensionality of queries have to match the dimensionality of

the keys. TRUE

• True or False: The number of keys have to match the number of values.

TRUE

• True or False: The number of keys have to match the number of queries. FALSE

• Dimensionalities:

I Q ∈ Rnqxdkq

I K ∈ Rnkvxdkq

I V ∈ Rnkvxdv

9



Attention

Quiz!

• True of False: The dimensionality of queries have to match the dimensionality of

the keys. TRUE

• True or False: The number of keys have to match the number of values. TRUE

• True or False: The number of keys have to match the number of queries.

FALSE

• Dimensionalities:

I Q ∈ Rnqxdkq

I K ∈ Rnkvxdkq

I V ∈ Rnkvxdv

9



Attention

Quiz!

• True of False: The dimensionality of queries have to match the dimensionality of

the keys. TRUE

• True or False: The number of keys have to match the number of values. TRUE

• True or False: The number of keys have to match the number of queries. FALSE

• Dimensionalities:

I Q ∈ Rnqxdkq

I K ∈ Rnkvxdkq

I V ∈ Rnkvxdv

9



Attention

Quiz!

• True of False: The dimensionality of queries have to match the dimensionality of

the keys. TRUE

• True or False: The number of keys have to match the number of values. TRUE

• True or False: The number of keys have to match the number of queries. FALSE

• Dimensionalities:

I Q ∈ Rnqxdkq

I K ∈ Rnkvxdkq

I V ∈ Rnkvxdv

9



Attention

We need to make two central decisions:

• How do we compute similarity?

• How do we ’normalize’ the similarity scores amongst values?

10



Attention

• Similarity: Dot product between keys and queries.

• Interesting theorem: In high dimensions, two randomly sampled 1 vectors are

almost always approximately perpendicular to each other.

• Normalization: Softmax along the keys/values!

• Result: Scaled dot product attention.

• We get the following attention mechanism:

A(Q,K ,V ) = softmax(
QKT√
dkq

)V (1)

1From, lets say, a isotropic multivariate Gaussian distribution.

11



Attention

12



Self-Attention and position embedding

Covered in the lecture

https://csc413-uoft.github.io/2021/assets/slides/lec08.pdf.

• What is self-attention?

• Use the same tensor to compute keys, values and queries!

• What is position embedding?

• Encode token’s position in the input text into a vector.

13

https://csc413-uoft.github.io/2021/assets/slides/lec08.pdf


Multi head attention

• Lingering question: What is learned in an attention layer?

I The space in which the similarities are computed.

I The transformations on the values.

• What if we’d like to have different notions of similarity on the same set of tokens?

• Multi head attention to the rescue!

14



Multi head attention

15



Transformers

16



Performance Comparison

17



What’s next?

• Brief intro to self supervised learning

• GPT (i.e. Self-supervised training of language model)

• BERT (i.e. Self-supervised training of language model)

18



What’s next?

• Brief intro to self supervised learning

• GPT (i.e. Self-supervised training of language model)

• BERT (i.e. Self-supervised training of language model)

18



Self Supervised Learning

Three types of learning:

• Supervised learning

• Reinforcement learning

• Unsupervised/self-supervised learning:

I When the label is in the data itself!

I Possible to make use of large amounts of data with no additional labelling

efforts.

19



Self Supervised Learning

Examples of self-supervised learning:

• Predict next frame in a video.

• Image completion.

• Auto-encoding tasks.

• Rotation prediction.

• Predicting next word from previous ones.

20



Pretraining Language Models

• Can we use large amounts of text data to pretrain language models?

• Considerations:

I How can we fuse both left-right and right-left context?

I How can we facilitate non-trivial interactions between input tokens?

• Previous approaches:

I ELMO (Peters. et. al., 2017): Bidirectional, but shallow.

I GPT (Radford et. al., 2018), GPT-2 (Radford et. al., 2019): Deep,

unidirectional.

I BERT (Devlin et. al., 2018): Deep and bidirectional!

21



Pretraining Language Models

• Can we use large amounts of text data to pretrain language models?

• Considerations:

I How can we fuse both left-right and right-left context?

I How can we facilitate non-trivial interactions between input tokens?

• Previous approaches:

I ELMO (Peters. et. al., 2017): Bidirectional, but shallow.

I GPT (Radford et. al., 2018), GPT-2 (Radford et. al., 2019): Deep,

unidirectional.

I BERT (Devlin et. al., 2018): Deep and bidirectional!

21



Pretraining Language Models

• Can we use large amounts of text data to pretrain language models?

• Considerations:

I How can we fuse both left-right and right-left context?

I How can we facilitate non-trivial interactions between input tokens?

• Previous approaches:

I ELMO (Peters. et. al., 2017): Bidirectional, but shallow.

I GPT (Radford et. al., 2018), GPT-2 (Radford et. al., 2019): Deep,

unidirectional.

I BERT (Devlin et. al., 2018): Deep and bidirectional!

21



GPT/GPT-2 Workflow

GPT and GPT-2 have very similar model architecture, we use GPT-2 as the example

from now on.

The GPT-2 wasn’t a particularly novel architecture – very similar to the decoder-only

transformer, but a very large model trained on massive datasets.

• The workflow includes:

I Pretrain on generic, self-supervised tasks, using large amounts of data (like

all of Wikipedia)

I Fine-tune on specific tasks with limited, labelled data.

• The pretraining tasks (will talk about this in more detail later):

I Predict next token (i.e. word/character) - to learn contextualized token

representations

22



Variants of GPT-2 of different sizes

Credits of following figures to Jay Alammar. He has a series of high quality blogs on

transformers http://jalammar.github.io/illustrated-gpt2/.

23

http://jalammar.github.io/illustrated-gpt2/


How GPT-2 works

Recall the transformer decoder. It generates the next token in an auto-regressive way.

To make this work, future tokens need to be masked out using the Masked

Self-Attention.

24



How GPT-2 works

Recall the transformer decoder. It generates the next token in an auto-regressive way.

To make this work, future tokens need to be masked out using the Masked

Self-Attention.
24



Masked Self-Attention

A normal self-attention block allows a position to peak at tokens to its right. Masked

self-attention prevents that from happening. This is one distinction between GPT-2

and BERT.

25



Under the hood

26



Under the hood

Next, BERT

27



BERT Workflow

• The BERT workflow includes:

I Pretrain on generic, self-supervised tasks, using large amounts of data (like

all of Wikipedia)

I Fine-tune on specific tasks with limited, labelled data.

• The pretraining tasks (will talk about this in more detail later):

I Masked Language Modelling (to learn contextualized token representations)

I Next Sentence Prediction (summary vector for the whole input)

28



BERT Architecture

29



BERT Architecture

Properties

• Two input sequences.

I Many NLP tasks have two inputs (question answering, paraphrase detection,

entailment detection etc. )

• Computes embeddings

I Both token, position and segment embeddings.

I Special start and separation tokens.

• Architecture

I Basically the same as transformer encoder.

• Outputs:

I Contextualized token representations.

I Special tokens for context.

30



BERT Embeddings

• How we tokenize the inputs is very important!

• BERT uses the WordPiece tokenizer (Wu et. al. 2016)

31



(Aside) Tokenizers

• Tokenizers have to balance the following:

I Being comprehensive (rare words? translation to different languages)

I Total number of tokens

I How semantically meaningful each token is.

• This is an activate area of research.

32



Pretraining tasks

• Masked Language Modelling (i.e. Cloze Task (Taylor, 1953)

• Next sentence prediction

33



Masked Language Modelling

• Mask 15% of the input tokens. (i.e. replace with a dummy masking token)

• Run the model, obtain the embeddings for the masked tokens.

• Using these embeddings, try to predict the missing token.

• ”I love to eat peanut and jam. ” Can you guess what’s missing?

34



Masked Language Modelling

This procedure forces the model to encode context information in the features of all of

the tokens.

35



Next Sentence Prediction

• Goal is to summarize the complete context (i.e. the two segments) in a single

feature vector.

• Procedure for generating data

I Pick a sentence from the training corpus and feed it as ”segment A”.

I With 50% probability, pick the following sentence and feed that as ”segment

B”.

I With 50% probability, pick the a random sentence and feed it as ”segment

B”.

• Using the features for the context token, predict whether segment B is the

following sentence of segment A.

• Turns out to be a very effective pretraining technique!

36



Fine Tuning

Procedure:

• Add a final layer on top of BERT representations.

• Train the whole network on the fine-tuning dataset.

• Pre-training time: In the order of days on TPUs.

• Fine tuning task: Takes only a few hours max.

37



Fine Tuning

38



Pointers

The BERT section of this tutorial is influenced by the fantastic talk by Lukasz Kaiser

on transformers: https://www.youtube.com/watch?v=rBCqOTEfxvgt=1704s

The GPT-2 section is influenced by the illustrated transformer blogs

http://jalammar.github.io/.

Hugging Face and tutorial notebooks:

https://huggingface.co/transformers/notebooks.html

39

http://jalammar.github.io/
https://huggingface.co/transformers/notebooks.html

