Recurrent Neural Networks (RNNs)

CSC413H1S 2021 Tutorial 7

Slides by: lan Shi

Slides by: lan Shi Recurrent Neural Networks (RNNs) 1/27

The Big Picture

Many domains feature sequences of data with temporal dependencies:
e Natural Language Processing (NLP)

@ Time series forecasting (Healthcare, Finance, etc.)

Common tasks:
@ Predict the next value in a sequence

@ Convert data sequence to equivalent sequence in another space
(translation)

@ Classify the entire sequence into specific class.

Slides by: lan Shi Recurrent Neural Networks (RNNs) 2/27

Related Methods

How do we model data which contains time dependency?

Autoregressive methods: Predict next data observation as a linear
equation of previously observed data points.

N

o) - ()) (o)

o Ex: zy =wi k1 Fworxxi_o+ ... + WK * Tk

@ Representational ability is limited. Only looks K steps back in time!

Slides by: lan Shi Recurrent Neural Networks (RNNs) 3/27

Related Methods

Hidden Markov Models (CSC412)

Hidden State [Y1]—)[Yo]—)[Y3]—) A ~>‘ YN
A
.. TN

\ 4

Observed Data [1] [T2] [T3] .

Use a hidden state to represent higher level information about sequence:

@ Ex: If we're modelling a sequence of temperature measurements,
attempt to encode information about season into hidden state.
Limitations

@ Updates between hidden states generally have to be linear

@ Makes Markov assumptions (no long term dependencies possible)

Slides by: lan Shi Recurrent Neural Networks (RNNs) 4/27

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) offer several advantages:
@ Non-linear hidden state updates allows high representational power.
e Can represent long term dependencies in hidden state (theoretically).

@ Shared weights, can be used on sequences of arbitrary length.

Slides by: lan Shi Recurrent Neural Networks (RNNs) 5/27

Recurrent Neural Networks

Output [01] [02] [03]
T Who T Who T Who

Hidden State [By]ﬂ,[hy]ﬂ,[hs]_> Wi,
T Win Win Win

Observed Data [X J [9] [z3 J

hy = Wiy, x¢ + Whp he—1 + bip, + bpp, (1)
at = tanh(hy) (2)
ot = softmax(Wp, a¢ + bpo) (3)

Weight matrices are shared, meaning sequence can be arbitrary length.

Slides by: lan Shi Recurrent Neural Networks (RNNs) 6/27

Applications of RNN

Time Series

Classification
Class Label

0
Hidden N
(I A N N
Data Q Q Q O Q

Autoregressive Predicted Output

Prediction - O~ O

Hidden

Data

Slides by: lan Shi Recurrent Neural Networks (RNNs) 7/27

Live Demo: Language Modelling with RNNs

Switching to code notebook.

Slides by: lan Shi Recurrent Neural Networks (RNNs) 8/27

Extensions of RNNs: RNNA¢

When your data is an actual time series (ex. stock prices, not English
sentences), including time as an input feature can be extremely helpful.

@ Useful when time series are irregularly sampled.

@ Also allows interpolation between observed sequences.

Generally, handle by including the time delta between observations.

o Instead of x;, feed augmented input {x;, t; —t;—1} to RNN.

Also see: GRU-D (Che et al. 2018), a sophisticated method to handle
irregularly and sparsely observed time series.

Slides by: lan Shi Recurrent Neural Networks (RNNs) 9/27

RNN Modifications: Bidirectional RNNs

Bidirectional RNNs (Schuster and Paliwal 1997)

-

Source: http://colah.github.io/posts/2015-09-NN-Types-FP/

Runs two separate RNN in opposite directions, and concatenate output.
@ Access to the future values can improve RNN representations.

o Example: The is a flightless bird that lives in Antarctica.

Slides by: lan Shi Recurrent Neural Networks (RNNs) 10 /27

http://colah.github.io/posts/2015-09-NN-Types-FP/

RNN Modifications: Stacked RNNs

Stacked RNNs
Output O O Q O O
R A N N
piadens | o] [of f | aneate
I N N N |

rror ot

I N N N |
bata O O O O O

Slides by: lan Shi

Recurrent Neural Networks (RNNs)

ch Implementation

CLASS torch.nn.RNN(xazgs, s#kwazrgs) [sC

Applies a multi-layer Eiman RNN with tanh or ReLLU non-linearity to an input sequence.
For each element in the input sequence, each layer computes the following function
ht = tanh(W;pas + bip + “’hhh\‘: 1+ bin)

where Ry is the hidden state at time ¢, ¢ is the input at time ¢, and hié 1) is the hidden state of the previous layer at
time ¢-7 or the initial hidden state at time o If nonlinearity is 'relu’,then ReLU is used instead of tanh

Parameters

« input_size - The number of expected features in the input x

hidden_size - The number of features in the hidden state h

num_layers - Number of recurrent layers. E.g, setting num_layers=2 would mean stacking two RNNs
‘together to form a stacked RNN, with the second RNN taking in outputs of the first RNN and computing the

final results. Default: 1

nonlinearity - The non-linearity to use. Can be either 'tanh' or 'relu’ Default: 'tanh®

bias - If False, then the layer does not use bias weights b_ih and b_hh. Default: True

batch_first - If True, then the input and output tensors are provided as (batch, seq, feature). Default

False

dropout - If non-zero, introduces a Dropout layer on the outputs of each RNN layer except the last layer,

with dropout probability equal to drepout . Default: 0

bidirectional - If True, becomes a bidirectional RNN. Default: False

lan Shi ecurrent

al Networks (RNNs)

Questions?

Slides by: lan Shi Recurrent Neural Networks (RNNs)

Long Term Dependencies

Prediction tasks in time series often requires long term information from
observations ago.

Example: “The flamingo is a pink bird which lives in warmer regions of the
world, and they like to speak in run-on sentences for the sake of this
example. Surprisingly, are not naturally pink, but rather appear
pink because they are always embarrassed.”

Task: Fill in the blank. The RNN needs to store information about the
subject for an arbitrarily long length. Experiments show RNNs have a hard
time remembering.

Slides by: lan Shi Recurrent Neural Networks (RNNs) 14 /27

Gradient Issues

Consider: Deepest feed forward models contain up to ~ 150 layers, but
the type of sequential data used in RNNs can easily exceed this in length.
What happens to the gradient?

Some intuition:
@ Backprop is chain rule, i.e., recursive multiplication of many VJPs.
@ The derivative of the Tanh / Sigmoid activation is always less than 1.

o Multiplying gradient with enough activation Jacobians will cause the
gradient will go to 0.

o Gradients can explode with ReLU activations (since its unbounded).

Hacky fixes: Gradient clipping to prevent explosion.

Slides by: lan Shi Recurrent Neural Networks (RNNs) 15 /27

LSTMs

Long Short-Term Memory (LSTM) units introduce long term cell state,
allowing gradients to flow without being forced to change.

@ Well, that description was unclear. Lets break it down!

The following figures are directly taken from Chris Olah’s blog:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

@ Avoiding citing each image to save space, but | claim no credit!

@ Side note: his blog contains many top tier tutorials, and is worth
checking out.

Slides by: lan Shi Recurrent Neural Networks (RNNs) 16 /27

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

RNN Diagram

Slides by: lan Shi Recurrent Neural Networks (RNNs)

LSTMs

LSTM Diagram

N N
X >
Gani>
A Lgigfll] A
J Ve

Slides by: lan Shi Recurrent Neural Networks (RNNs)

LSTMs

Personally, | think of cell state as long-term memory. Protected by gates
(next slides) from unwanted gradient updates.

Cia C;

®
O

Slides by: lan Shi Recurrent Neural Networks (RNNs) 19 /27

LSTMs

Forget Gate: Deletes information from cell state.

fe=0(Wg-[he1, 2] + by)

@ Takes linear combination of x; and h;—1.
e Sigmoid activation squashes to range 0 (forget) to 1 (remember).

@ Output multiplied element-wise with cell state to forget certain pieces
of long term information (e.g., if the subject switches).

Slides by: lan Shi Recurrent Neural Networks (RNNs) 20/27

LSTMs

Input Gate: Adds information to cell state.

iv =0 (Wi-[hi—1, 2] + b;)
Cy = tanh(We-[he—1, 2] + be)

@ First function determines which cell dimensions to update.
@ Second function determines what values to update cell state with.

@ Output of input gate is added to cell state.

Slides by: lan Shi Recurrent Neural Networks (RNNs) 21/27

LSTMs

Output Gate: Decides what information to output from cell state.

hy T

Eanh> 0 = O'(WO [ht—l:mt] + bo)

0 X
o hi = o * tanh (C})

o Afterwards, hidden and cell states passed to next cell.

Slides by: lan Shi Recurrent Neural Networks (RNNs) 22/27

LSTM De

Switching to Notebook

Slides by: lan Shi Recurrent Neural Networks (RNNs) 23 /27

GRU

LSTMs are pretty complex, and require many weights.

Gated Recurrent Units (GRUs) (Cho et al. 2014) simplify LSTMs, and
should perform roughly as well.

Zt = J(Wz . [ht—luwt])
Tt =0 (Wr . [ht—hmf])
hy = tanh (W - [ry % hy_y1, 2¢])

Ml o—a—H»

ht:(l—zt)*ht,l—i—zt*ilt

el

Merge cell and hidden states, but keep the concept of gating updates to
hidden state.

Slides by: lan Shi Recurrent Neural Networks (RNNs) 24 /27

Conclusions

So do LSTMs actually solve the vanishing gradient problem? Kinda!

@ Many deployed real-world applications.
Powered Google Translate for many years.

@ Long term dependencies still challenging in reality.

G
1%

SimpleRNN

|
|
|
|
|
|
|
|

2

i
|
|
i
]
|
i
i

i kb BV il) Wi i)

|
o] b L2 mmi I]

Figure: Heatmap of gradient flow mapped out by depth.
Source: https://github.com/0verLordGoldDragon/see-rnn

Slides by: lan Shi Recurrent Neural Networks (RNNs)

https://github.com/OverLordGoldDragon/see-rnn

Having to somehow pass long term information through hidden states may
be a fundamentally flawed paradigm.

@ Example: When we read, we don't actually look at the whole
sentence, only keywords.

Next time on CSC413: Attention & Transformers — teaching our models to
focus on the important parts.

Slides by: lan Shi Recurrent Neural Networks (RNNs) 26 /27

References

@ Zhengping Che et al. “Recurrent neural networks for multivariate time series
with missing values”. In: Scientific reports 8.1 (2018), pp. 1-12.

@ Kyunghyun Cho et al. “Learning phrase representations using RNN
encoder-decoder for statistical machine translation”. In: arXiv preprint
arXiv:1406.1078 (2014).

@ Mike Schuster and Kuldip K Paliwal. “Bidirectional recurrent neural
networks” . In: |EEE transactions on Signal Processing 45.11 (1997),
pp. 2673-2681.

Slides by: lan Shi Recurrent Neural Networks (RNNs) 27 /27

	References

