
CSC413/2516 Lecture 11:
Q-Learning & the Game of Go

Jimmy Ba and Bo Wang

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 1 / 38

Overview

Second lecture on reinforcement learning

Previously, we have seen how to optimize a policy directly

Today: Q-learning

Learn an action-value function that predicts future returns

Case study: AlphaGo uses both a policy network and a value network

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 2 / 38

Overview

Agent interacts with an environment, which we treat as a black box

Your RL code accesses it only through an API since it’s external to
the agent

I.e., you’re not “allowed” to inspect the transition probabilities, reward
distributions, etc.

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 3 / 38

Recap: Markov Decision Processes

The environment is represented as a Markov decision process (MDP)
M.

Markov assumption: all relevant information is encapsulated in the
current state

Components of an MDP:

initial state distribution p(s0)
transition distribution p(st+1 | st , at)
reward function r(st , at)

policy πθ(at | st) parameterized by θ

Assume a fully observable environment, i.e. st can be observed directly

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 4 / 38

Finite and Infinite Horizon

Last time: finite horizon MDPs

Fixed number of steps T per episode
Maximize expected return R = Ep(τ)[r(τ)]

Now: more convenient to assume infinite horizon

We can’t sum infinitely many rewards, so we need to discount them:
$100 a year from now is worth less than $100 today
Discounted return

Gt = rt + γrt+1 + γ2rt+2 + · · ·

Want to choose an action to maximize expected discounted return
The parameter γ < 1 is called the discount factor

small γ = myopic
large γ = farsighted

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 5 / 38

Value Function

Value function V π(s) of a state s under policy π: the expected
discounted return if we start in s and follow π

V π(s) = E[Gt | st = s]

= E

[∞∑
i=0

γ i rt+i | st = s

]

Computing the value function is generally impractical, but we can try
to approximate (learn) it

The benefit is credit assignment: see directly how an action affects
future returns rather than wait for rollouts

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 6 / 38

Value Function

Rewards: -1 per time step

Undiscounted (γ = 1)

Actions: N, E, S, W

State: current location
Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 7 / 38

Value Function

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 8 / 38

Value Function

The value function has a recursive formula

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 9 / 38

Action-Value Function

Can we use a value function to choose actions?

arg max
a

r(st , a) + γEp(st+1 | st ,at)[V
π(st+1)]

Problem: this requires taking the expectation with respect to the
environment’s dynamics, which we don’t have direct access to!

Instead learn an action-value function, or Q-function: expected
returns if you take action a and then follow your policy

Qπ(s, a) = E[Gt | st = s, at = a]

Relationship:

V π(s) =
∑
a

π(a | s)Qπ(s, a)

Optimal action:
arg max

a
Qπ(s, a)

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 10 / 38

Action-Value Function

Can we use a value function to choose actions?

arg max
a

r(st , a) + γEp(st+1 | st ,at)[V
π(st+1)]

Problem: this requires taking the expectation with respect to the
environment’s dynamics, which we don’t have direct access to!

Instead learn an action-value function, or Q-function: expected
returns if you take action a and then follow your policy

Qπ(s, a) = E[Gt | st = s, at = a]

Relationship:

V π(s) =
∑
a

π(a | s)Qπ(s, a)

Optimal action:
arg max

a
Qπ(s, a)

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 10 / 38

Bellman Equation

The Bellman Equation is a recursive formula for the action-value
function:

Qπ(s, a) = r(s, a) + γEp(s′ | s,a)π(a′ | s′)[Q
π(s′, a′)]

There are various Bellman equations, and most RL algorithms are
based on repeatedly applying one of them.

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 11 / 38

Optimal Bellman Equation

The optimal policy π∗ is the one that maximizes the expected
discounted return, and the optimal action-value function Q∗ is the
action-value function for π∗.

The Optimal Bellman Equation gives a recursive formula for Q∗:

Q∗(s, a) = r(s, a) + γEp(s′ | s,a)

[
max
a′

Q∗(st+1, a
′) | st = s, at = a

]
This system of equations characterizes the optimal action-value
function. So maybe we can approximate Q∗ by trying to solve the
optimal Bellman equation!

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 12 / 38

Q-Learning

Let Q be an action-value function which hopefully approximates Q∗.

The Bellman error is the update to our expected return when we
observe the next state s′.

r(st , at) + γmax
a

Q(st+1, a)︸ ︷︷ ︸
inside E in RHS of Bellman eqn

− Q(st , at)

The Bellman equation says the Bellman error is 0 at convergence.

Q-learning is an algorithm that repeatedly adjusts Q to minimize the
Bellman error

Each time we sample consecutive states and actions (st , at , st+1):

Q(st , at)← Q(st , at) + α
[
r(st , at) + γmax

a
Q(st+1, a)− Q(st , at)

]
︸ ︷︷ ︸

Bellman error

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 13 / 38

Exploration-Exploitation Tradeoff

Notice: Q-learning only learns about the states and actions it visits.

Exploration-exploitation tradeoff: the agent should sometimes pick
suboptimal actions in order to visit new states and actions.

Simple solution: ε-greedy policy

With probability 1− ε, choose the optimal action according to Q
With probability ε, choose a random action

Believe it or not, ε-greedy is still used today!

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 14 / 38

Q-Learning

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 15 / 38

Function Approximation

So far, we’ve been assuming a tabular representation of Q: one entry
for every state/action pair.

This is impractical to store for all but the simplest problems, and
doesn’t share structure between related states.

Solution: approximate Q using a parameterized function, e.g.

linear function approximation: Q(s, a) = w>ψ(s, a)
compute Q with a neural net

Update Q using backprop:

t ← r(st , at) + γmax
a

Q(st+1, a)

θ ← θ + α(t − Q(s, a))
∂Q

∂θ

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 16 / 38

Function Approximation with Neural Networks

Approximating Q with a neural net is a decades-old idea, but
DeepMind got it to work really well on Atari games in 2013 (“deep
Q-learning”)
They used a very small network by today’s standards

Main technical innovation: store experience into a replay buffer, and
perform Q-learning using stored experience

Gains sample efficiency by separating environment interaction from
optimization — don’t need new experience for every SGD update!

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 17 / 38

Atari

Mnih et al., Nature 2015. Human-level control through deep
reinforcement learning

Network was given raw pixels as observations

Same architecture shared between all games

Assume fully observable environment, even though that’s not the case

After about a day of training on a particular game, often beat
“human-level” performance (number of points within 5 minutes of
play)

Did very well on reactive games, poorly on ones that require planning
(e.g. Montezuma’s Revenge)

https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=4MlZncshy1Q

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 18 / 38

https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=4MlZncshy1Q

Wireheading

If rats have a lever that causes an electrode to stimulate certain
“reward centers” in their brain, they’ll keep pressing the lever at the
expense of sleep, food, etc.

RL algorithms show this “wireheading” behavior if the reward
function isn’t designed carefully

https://blog.openai.com/faulty-reward-functions/

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 19 / 38

https://blog.openai.com/faulty-reward-functions/

Policy Gradient vs. Q-Learning

Policy gradient and Q-learning use two very different choices of
representation: policies and value functions

Advantage of both methods: don’t need to model the environment

Pros/cons of policy gradient

Pro: unbiased estimate of gradient of expected return
Pro: can handle a large space of actions (since you only need to sample
one)
Con: high variance updates (implies poor sample efficiency)
Con: doesn’t do credit assignment

Pros/cons of Q-learning

Pro: lower variance updates, more sample efficient
Pro: does credit assignment
Con: biased updates since Q function is approximate (drinks its own
Kool-Aid)
Con: hard to handle many actions (since you need to take the max)

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 20 / 38

AlphaGo

Most of the problem domains we’ve discussed so far were natural
application areas for deep learning (e.g. vision, language)

We know they can be done on a neural architecture (i.e. the human
brain)
The predictions are inherently ambiguous, so we need to find statistical
structure

Board games are a classic AI domain which relied heavily on
sophisticated search techniques with a little bit of machine learning

Full observations, deterministic environment — why would we need
uncertainty?

The second part of the lecture is about AlphaGo, DeepMind’s Go
playing system which took the world by storm in 2016 by defeating
the human Go champion Lee Sedol

Combines ideas from our last two lectures (policy gradient and value
function learning)

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 21 / 38

AlphaGo

Some milestones in computer game playing:

1949 — Claude Shannon proposes the idea of game tree search,
explaining how games could be solved algorithmically in principle

1951 — Alan Turing writes a chess program that he executes by hand

1956 — Arthur Samuel writes a program that plays checkers better
than he does

1968 — An algorithm defeats human novices at Go

...silence...

1992 — TD-Gammon plays backgammon competitively with the best
human players

1996 — Chinook wins the US National Checkers Championship

1997 — DeepBlue defeats world chess champion Garry Kasparov

After chess, Go was humanity’s last stand

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 22 / 38

Go

Played on a 19 × 19 board

Two players, black and white, each place one stone per turn

Capture opponent’s stones by surrounding them

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 23 / 38

Go

What makes Go so challenging:

Hundreds of legal moves from any position, many of which are
plausible

Games can last hundreds of moves

Unlike Chess, endgames are too complicated to solve exactly
(endgames had been a major strength of computer players for games
like Chess)

Heavily dependent on pattern recognition

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 24 / 38

Game Trees

Each node corresponds to a legal state of the game.

The children of a node correspond to possible actions taken by a player.

Leaf nodes are ones where we can compute the value since a win/draw
condition was met

https://www.cs.cmu.edu/~adamchik/15-121/lectures/Game%20Trees/Game%20Trees.html

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 25 / 38

https://www.cs.cmu.edu/~adamchik/15-121/lectures/Game%20Trees/Game%20Trees.html

Game Trees

To label the internal nodes, take the max over the children if it’s
Player 1’s turn, min over the children if it’s Player 2’s turn

https://www.cs.cmu.edu/~adamchik/15-121/lectures/Game%20Trees/Game%20Trees.html

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 26 / 38

https://www.cs.cmu.edu/~adamchik/15-121/lectures/Game%20Trees/Game%20Trees.html

Game Trees

As Claude Shannon pointed out in 1949, for games with finite
numbers of states, you can solve them in principle by drawing out the
whole game tree.

Ways to deal with the exponential blowup

Search to some fixed depth, and then estimate the value using an
evaluation function
Prioritize exploring the most promising actions for each player
(according to the evaluation function)

Having a good evaluation function is key to good performance

Traditionally, this was the main application of machine learning to
game playing
For programs like Deep Blue, the evaluation function would be a
learned linear function of carefully hand-designed features

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 27 / 38

Now for DeepMind’s computer Go player, AlphaGo...

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 28 / 38

Supervised Learning to Predict Expert Moves

Can a computer play Go without any search?

Input: a 19× 19 ternary (black/white/empty) image — about half the size of
MNIST!

Prediction: a distribution over all (legal) next moves

Training data: KGS Go Server, consisting of 160,000 games and 29 million
board/next-move pairs

Architecture: fairly generic conv net

When playing for real, choose the highest-probability move rather than sampling
from the distribution

This network, which just predicted expert moves, could beat a fairly strong

program called GnuGo 97% of the time.

This was amazing — basically all strong game players had been based on

some sort of search over the game tree

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 29 / 38

Supervised Learning to Predict Expert Moves

Can a computer play Go without any search?

Input: a 19× 19 ternary (black/white/empty) image — about half the size of
MNIST!

Prediction: a distribution over all (legal) next moves

Training data: KGS Go Server, consisting of 160,000 games and 29 million
board/next-move pairs

Architecture: fairly generic conv net

When playing for real, choose the highest-probability move rather than sampling
from the distribution

This network, which just predicted expert moves, could beat a fairly strong

program called GnuGo 97% of the time.

This was amazing — basically all strong game players had been based on

some sort of search over the game tree

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 29 / 38

Self-Play and REINFORCE

The problem from training with expert data: there are only 160,000
games in the database. What if we overfit?
There is effecitvely infinite data from self-play

Have the network repeatedly play against itself as its opponent
For stability, it should also play against older versions of itself

Start with the policy which samples from the predictive distribution
over expert moves

The network which computes the policy is called the policy network

REINFORCE algorithm: update the policy to maximize the expected
reward r at the end of the game (in this case, r = +1 for win, −1 for
loss)

If θ denotes the parameters of the policy network, at is the action at
time t, and st is the state of the board, and z the rollout of the rest
of the game using the current policy

R = Eat∼pθ(at | st)[E[r(z) | st , at]]

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 30 / 38

Self-Play and REINFORCE

Gradient of the expected reward:

∂R

∂θ
=
∂R

∂θ
Eat∼pθ(at | st)[E[r(z) | st , at]]

=
∂

∂θ

∑
at

∑
z

pθ(at | st)p(z |st , at)R(z)

=
∑
at

∑
z

p(z)R(z)
∂

∂θ
pθ(at | st)

=
∑
at

∑
z

p(z | st , at)R(z)pθ(at | st)
∂

∂θ
log pθ(at | st)

= Epθ(at | st)

[
Ep(z | st ,at)

[
R(z)

∂

∂θ
log pθ(at | st)

]]

English translation: sample the action from the policy, then sample the
rollout for the rest of the game.

If you win, update the parameters to make the action more likely. If
you lose, update them to make it less likely.

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 31 / 38

Monte Carlo Tree Search

In 2006, computer Go was revolutionized by a technique called Monte
Carlo Tree Search.

Silver et al., 2016

Estimate the value of a position by simulating lots of rollouts,
i.e. games played randomly using a quick-and-dirty policy

Keep track of number of wins and losses for each node in the tree

Key question: how to select which parts of the tree to evaluate?

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 32 / 38

Monte Carlo Tree Search

The selection step determines which part of the game tree to spend
computational resources on simulating.

This is an instance of the exploration-exploitation

Want to focus on good actions for the current player
But want to explore parts of the tree we’re still uncertain about

Uniform Confidence Bound (UCB) is a common heuristic; choose the
node which has the largest frequentist upper confidence bound on its
value:

µi +

√
2 logN

Ni

µi = fraction of wins for action i , Ni = number of times we’ve tried
action i , N = total times we’ve visited this node

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 33 / 38

Tree Search and Value Networks

We just saw the policy network.
But AlphaGo also has another
network called a value network.

This network tries to predict, for a
given position, which player has the
advantage.

This is just a vanilla conv net
trained with least-squares
regression.

Data comes from the board
positions and outcomes
encountered during self-play.

Silver et al., 2016

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 34 / 38

Policy and Value Networks

AlphaGo combined the policy and value networks with Monte Carlo
Tree Search

Policy network used to simulate rollouts

Value network used to evaluate leaf positions

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 35 / 38

AlphaGo Timeline

Summer 2014 — start of the project (internship project for UofT
grad student Chris Maddison)

October 2015 — AlphaGo defeats European champion

First time a computer Go player defeated a human professional without
handicap — previously believed to be a decade away

January 2016 — publication of Nature article “Mastering the game
of Go with deep neural networks and tree search”

March 2016 — AlphaGo defeats gradmaster Lee Sedol

October 2017 — AlphaGo Zero far surpasses the original AlphaGo
without training on any human data

Decemter 2017 — it beats the best chess programs too, for good
measure

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 36 / 38

AlphaGo

Most of the Go world expected AlphaGo to lose 5-0 (even after it had
beaten the European champion)

It won the match 4-1

Some of its moves seemed bizarre to human experts, but turned out
to be really good

Its one loss occurred when Lee Sedol played a move unlike anything in
the training data

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 37 / 38

AlphaGo

Further reading:

Silver et al., 2016. Mastering the game of Go with deep neural
networks and tree search. Nature http://www.nature.com/
nature/journal/v529/n7587/full/nature16961.html

Scientific American: https://www.scientificamerican.com/

article/how-the-computer-beat-the-go-master/

Talk by the DeepMind CEO:
https://www.youtube.com/watch?v=aiwQsa_7ZIQ&list=

PLqYmG7hTraZCGIymT8wVVIXLWkKPNBoFN&index=8

Jimmy Ba and Bo Wang CSC413/2516 Lecture 11: Q-Learning & the Game of Go 38 / 38

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://www.scientificamerican.com/article/how-the-computer-beat-the-go-master/
https://www.scientificamerican.com/article/how-the-computer-beat-the-go-master/
https://www.youtube.com/watch?v=aiwQsa_7ZIQ&list=PLqYmG7hTraZCGIymT8wVVIXLWkKPNBoFN&index=8
https://www.youtube.com/watch?v=aiwQsa_7ZIQ&list=PLqYmG7hTraZCGIymT8wVVIXLWkKPNBoFN&index=8

