MATH AHEAD

DON'T PANIC!
SKIM IF YOU HAVE TO.

CSC413/2516 Lecture 10:
Generative Models & Reinforcement Learning

Jimmy Ba and Bo Wang

Jimmy Ba and Bo Wang CSC413/2516 Lecture 10: Generative Model

.
Logistics

Some administrative stuff:
e PA 4 (most interesting) is out! (Due April 1st, not a joke!)
e HW 4 (most 'mathy’) will be out in March 25th, and due April 08.
e Final Project is due April 12th! (likely to be extended, stay tuned!)

Jimmy Ba and Bo Wang CSC413/2516 Lecture 10: Generative Model

Overview

Quiz: Which face image is fake?

Jimmy Ba and Bo Wang CSC413/2516 Lecture 10: Generative Model

Overview

Four modern approaches to generative modeling:
@ Autoregressive models (Lectures 3, 7, and 8)
@ Generative adversarial networks (last lecture)
@ Reversible architectures (last lecture)

@ Variational autoencoders (this lecture)

All four approaches have different pros and cons.

Jimmy Ba and Bo Wang CSC413/2516 Lecture 10: Generative Model

Autoencoders

@ An autoencoder is a feed-forward neural net whose job it is to take an
input x and predict x.

@ To make this non-trivial, we need to add a bottleneck layer whose
dimension is much smaller than the input.

reconstruction 784 units
A
100 units decoder
A
code vector 20 units
A
100 units encoder
A
input 784 units

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Autoencoders

Why autoencoders?

@ Map high-dimensional data to two dimensions for visualization
@ Compression (i.e. reducing the file size)
@ Note: this requires a VAE, not just an ordinary autoencoder.

@ Learn abstract features in an unsupervised way so you can apply them
to a supervised task

o Unlabled data can be much more plentiful than labeled data

@ Learn a semantically meaningful representation where you can, e.g.,
interpolate between different images.

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Principal Component Analysis (optional)

@ The simplest kind of autoencoder has one
hidden layer, linear activations, and squared s

X D units
error loss. i
U decoder
S\ <112
L(x, %) = []x — %] K units
A
@ This network computes x = UVx, which is a \% encoder
linear function. x D units
e If K> D, we can choose U and V such that

UV is the identity. This isn’t very interesting.
@ But suppose K < D:

o V maps x to a K-dimensional space, so it's doing dimensionality
reduction.

o The output must lie in a K-dimensional subspace, namely the column
space of U.

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Principal Component Analysis (optional)

@ Review from CSC311: linear

autoencoders with squared error r-"-nag
loss are equivalent to Principal — = o

X " ASEEEEEE

Component Analysis (PCA). = - = 4

@ Two equivalent formulations: Hmnni_.,

o Find the subspace that gj%ﬁgﬂ

minimizes the reconstruction - —_ —

f -
ertor SENEEREN

© Fid e sbone ot 15 O B
maximizes the projected = e — e
. - o e (NS Y ¥
variance. SEEESEEE
@ The optimal subspace is a

spanned by the dominant

eigenvectors of the empirical “Eigenfaces”
covariance matrix.

Jimmy Ba and Bo Wang CSC413/2516 Lecture 10: Generative Model

Deep Autoencoders

@ Deep nonlinear autoencoders learn to project the data, not onto a
subspace, but onto a nonlinear manifold

@ This manifold is the image of the decoder.

@ This is a kind of nonlinear dimensionality reduction.

2 units

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Deep Autoencoders

@ Nonlinear autoencoders can learn more powerful codes for a given

dimensionality, compared with linear autoencoders (PCA)

D /&3 4 5673 8 Q
D /7 & 3 4 s 7F 8 Q

Jimmy Ba and Bo Wang CSC413/2516 Lecture 10: Generative Model

real

data

30-D
deep auto

30-D
PCA

Deep Autoencoders

@ Some limitations of autoencoders

e They're not generative models, so they don't define a distribution
e How to choose the latent dimension?

Jimmy Ba and Bo Wang CSC413/2516 Lecture 10: Generative Model

Variational Auto-encoder (VAE)

zi~q(zi|xi,)

Jimmy Ba and Bo Wang CSC413/2516 Lecture 10:

Decoder learns the generative process
given the sampled latent vectors.

Sampling process in the middle.

Encoder learns the distribution of latent
space given the observations.

Generative Model

Variational Auto-encoder (VAE)

neural network
decoder

neural network

encoder

loss = ||x-X]|]> + KL ,N(O,)]

” 'd()“2 + KI—[IN(OI I)]

Source: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

N
Observation Model

Source: https://iagtm.pressbooks.com/chapter/story-platos-allegory-of-the-cave/

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

N
Observation Model

e Consider training a generator network with maximum likelihood.

p(x) = / p(2)p(x | 2) dz

@ One problem: if z is low-dimensional and the decoder is deterministic,
then p(x) = 0 almost everywhere!

e The model only generates samples over a low-dimensional sub-manifold
of X.
@ Solution: define a noisy observation
model, e.g.

p(x|z) = N(x; Go(2), 1),

where Gy is the function computed by
the decoder with parameters 6.

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

N
Observation Model

o At least p(x) = [p(z)p(x|z) dz is well-defined, but how can we

compute it?
@ Integration, according to XKCD:
DIFFERENTIATION INTEGRATION

TRY APPLYING

INTEGRATION
BY PARTS SUBSTITUTION

N
Observation Model

o At least p(x) = [p(z)p(x|z) dz is well-defined, but how can we
compute it?
o The decoder function Gg(z) is very complicated, so there's no hope of
finding a closed form.

@ Instead, we will try to maximize a lower bound on log p(x).
e The math is essentially the same as in the EM algorithm from CSC411.

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Variational Inference

@ We obtain the lower bound using
Jensen’s Inequality: for a convex
function h of a random variable X,

E[h(X)] = h(E[X])

Therefore, if his concave (i.e. —his = . }
convex), .

E[h(X)] < h(E[X])

log 2z
@ The function log z is concave.

Therefore,

E[log X] < log E[X]

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Variational Inference

@ Suppose we have some distribution g(z). (We'll see later where this
comes from.)

@ We use Jensen's Inequality to obtain the lower bound.

Heads-up: You will show the full calculation in HWA4.

log p(x) = log /p(Z) p(x|z) dz
~ log / a(2) 22 plxia)

(2)"
q(z) log [q i) p x\z)] dz (Jensen’s Inequality)
[log 28] + o og pixi)

e We'll look at these two terms in turn.

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Variational Inference

@ The first term we'll look at is Eq [log p(x|z)]

@ Since we assumed a Gaussian observation model,

log p(x|z) = log N'(x; Go(2),nl)

—tog | o0 (5 k- G)|

1
= —2—n||x — Go(2)]|? + const

@ So this term is the expected squared error in reconstructing x from z.
We call it the reconstruction term.

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Variational Inference

/-\

p(z)

el

e This is just —Dkr.(q(z)||p(z)), where Dxr, is the Kullback-Leibler
(KL) divergence

@ The second term is [E, [

_/

it (a(2)|p(2)) £ Eq Jlog 4|

e KL divergence is a widely used measure of distance between probability
distributions, though it doesn’t satisfy the axioms to be a distance
metric.

o More details in tutorial.

e Typically, p(z) = N(0,1). Hence, the KL term encourages g to be
close to AV/(0,1).

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Variational Inference

@ Hence, we're trying to maximize the variational lower bound, or
variational free energy:

log p(x) = F(6, q) = Eq [log p(x|z)] — Dxw(ql[p)-

@ The term “variational” is a historical accident: “variational inference”
used to be done using variational calculus, but this isn't how we train

VAEs.
e We'd like to choose g to make the bound as tight as possible.
@ It's possible to show that the gap is given by:

log p(x) — F(8, q) = Dkr(q(z) p(z]x)).

Therefore, we'd like g to be as close as possible to the posterior
distribution p(z|x).

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

@ Let's think about the role of each of the two terms.

@ [he reconstruction term

1
Eq[log p(x[2)] = —5—5Eqlllx — Go(2)]*] + const

is minimized when g is a point mass on

z, = argmin ||x — Gy(2)||°.
z

@ But a point mass would have infinite KL divergence. (Exercise: check
this.) So the KL term forces g to be more spread out.

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Reparameterization Trick

e To fit g, let’s assign it a parametric form, in particular a Gaussian
distribution: q(z) = N(z; u, X), where g = (1, ..., k) and
¥ = diag(c?,...,0%).

@ In general, it's hard to differentiate through an expectation. But for
Gaussian g, we can apply the reparameterization trick:

Zj = Wi + Oj€j,

where ¢; ~ N(0, 1).
@ Hence,
Wi =z gi = Zj€j.

@ This is exactly analogous to how we derived the backprop rules for
dropout

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Reparameterization Trick

Original form

|_ _________________ 1
| |
| f i
I |
| |
| ~q@ex)
| |
: N X :
| |
I |

|

: Deterministic node

. : Random node

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Reparameterization Trick

Original form Reparameterised form
S o]
| f | . Backprop f |
: NN :
: ~q@ex) 2/0s 2, =9®xe) |
| Y4 |
| & & 1 9f/0g B X ~ple) |
: .| =0L/dg :

! | |

[Kingma, 2013]

[Bengio, 2013]

[Kingma and Welling 2014]
[Rezende et al 2014]

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

: Deterministic node

. : Random node

Amortization

@ This suggests one strategy for learning the decoder. For each training
example,

© Fit g to approximate the posterior for the current x by doing many
steps of gradient ascent on F.
@ Update the decoder parameters @ with gradient ascent on F.
@ Problem: this requires an expensive iterative procedure for every
training example, so it will take a long time to process the whole
training set.

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Amortization

@ ldea: amortize the cost of inference by
learning an inference network which

predicts (u, X) as a function of x. - z

@ The outputs of the inference net are u € / \
and logo. (The log representation pl logd gzl
ensures o > 0.) X/

e If o = 0, then this network essentially
computes z deterministically, by way of
.

e But the KL term encourages o > 0,
so in general z will be noisy.

@ The notation g(z|x) emphasizes that ¢ X
depends on x, even though it's not
actually a conditional distribution.

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Amortization

@ Combining this with the decoder
network, we see the structure closely
resembles an ordinary autoencoder. The
inference net is like an encoder.

@ Hence, this architecture is known as a
variational autoencoder (VAE).

@ The parameters of both the encoder
and decoder networks are updated using
a single pass of ordinary backprop.

@ The reconstruction term corresponds
to squared error ||x — %/, like in an
ordinary VAE.

o The KL term regularizes the
representation by encouraging z to be
more stochastic.

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Z

e/

u

log o1

_/

decoder

encoder

I
VAE - Summary

Reparam. trick
for differentiability

©

Computed
@ analytically
My Oy = M(X), Z(X)

e~ N(0,1)
zZ=€0, + U,
x, = po(x | 2)
recon. loss = MSE(x, x,)
var. loss = —KL[N (g, 0,)||N(0, I)]

L = recon. loss + var. loss

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Push x through encoder

Sample noise

Reparameterize

Push z through decoder

Compute reconstruction loss

Compute variational loss

Combine losses

R
VAEs vs. Other Generative Models

@ In short, a VAE is like an autoencoder, except that it's also a
generative model (defines a distribution p(x)).

@ Unlike autoregressive models, generation only requires one forward
pass.

@ Unlike reversible models, we can fit a low-dimensional latent
representation. We'll see we can do interesting things with this...

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Latent Space Interpolations

@ You can often get interesting results by interpolating between two
vectors in the latent space:

LR B BAD %
£+ LY ¥ P O

B A% KA XN -

Ha and Eck, “A neural representation of sketch drawings”

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Latent Space Interpolations

@ You can often get interesting results by interpolating between two
vectors in the latent space:

-0 - ————-— e — — — — =]

add
smiling
vector
. ' . subtract
f. - smiling
{-i»‘. . — - - vector
add
sunglass
vector

add
sunglass
vector

subtract
sunglass
vector

https://arxiv.org/pdf/1610.00291.pdf

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Latent Space Interpolations

@ Latent space interpolation of music:
https://magenta.tensorflow.org/music-vae

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

N
After the break

After the break: Reinforcement Learning: Policy Gradient

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Alpha-Go Trailer --- This is it, folks!

Jimmy Ba and Bo Wang CSC413/2516 Lecture 10: Generative Model

Overview

@ Most of this course was about supervised learning, plus a little
unsupervised learning.

@ Reinforcement learning:

e Middle ground between supervised and unsupervised learning
@ An agent acts in an environment and receives a reward signal.

e Today: policy gradient (directly do SGD over a stochastic policy
using trial-and-error)

@ Next lecture: combine policies and Q-learning

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Overview
Machine
Learning
O O O
Task Driven Data Driven Learn from
(Predict next value) (Identify Clusters) Mistakes

Source: https://perfectial.com/blog/reinforcement-learning-applications/

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Overview

How does Al take over the world? Three Steps!

SUPERVISED UNSUPERVISED REINFORCEMENT
LEARNING LEARNING LEARNING

[

oo
%

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Reinforcement learning

=

O

@B °
@ An agent interacts with an environment (e.g. game of Breakout)

@ In each time step t,
o the agent receives observations (e.g. pixels) which give it information
about the state s; (e.g. positions of the ball and paddle)
o the agent picks an action a; (e.g. keystrokes) which affects the state
@ The agent periodically receives a reward r(s;,a;), which depends on
the state and action (e.g. points)
@ The agent wants to learn a policy mg(a;: | st)
e Distribution over actions depending on the current state and
parameters 6

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Reinforcement learning

Cart-Pole Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright

//////////////////////////////

Source: Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Jimmy Ba and Bo Wang CSC413/2516 Lecture 10: Generative Model

Reinforcement learning

Robot Locomotion

o/
~

-

Maybe it knows
something we don't!

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright +
forward movement

Source: Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Reinforcement learning

Go

AFBEC DS ESRAGEH L] KR USMAENS OSP SQ TR 5SS -T)

] RN R

14 —
13
12

: (o8]

-
©°

=
o

-
<

_/
-
=)

=
T}

-
IS

Objective: Win the game!

=
w

-
N

o o

11 —

=
=

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise

©
-
ke

] ol

N

1 [

AlBC DE FG HIJ KEEMENTOF QIR'S T

KOS
I

HNWHs U N ®
v

Source: Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Markov Decision Processes

@ The environment is represented as a Markov decision process M.

@ Markov assumption: all relevant information is encapsulated in the
current state; i.e. the policy, reward, and transitions are all
independent of past states given the current state

@ Components of an MDP:

initial state distribution p(sp)

policy mg(a¢ | s¢)
transition distribution p(s¢y1|se,ar)
reward function r(s;,a;)

¢ ¢ o ¢

@ Assume a fully observable environment, i.e. s; can be observed directly
e Rollout, or trajectory 7 = (sg,ag,S1,a1,...,S7,aT)
@ Probability of a rollout

p(7) = p(so) me(ao | so) p(s1 [s0,a0) - - - p(s7|sT-1,a7-1) To(at |ST)

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Markov Decision Processes

Continuous control in simulation, e.g. teaching an ant to walk

@ State: positions, angles, and velocities of the joints

@ Actions: apply forces to the joints

@ Reward: distance from starting point

@ Policy: output of an ordinary MLP, using the state as input

@ More environments: https://gym.openai.com/envs/#mujoco
o A CSC413/2516 Lecture 10: Generative Model

Markov Decision Processes

@ Return for a rollout: r(7) = Etho r(st,az)
o Note: we're considering a finite horizon T, or number of time steps;
we'll consider the infinite horizon case later.
o Goal: maximize the expected return, R = E,)[r(7)]

@ The expectation is over both the environment’'s dynamics and the
policy, but we only have control over the policy.
@ The stochastic policy is important, since it makes R a continuous
function of the policy parameters.
e Reward functions are often discontinuous, as are the dynamics
(e.g. collisions)

3 A
return expected
return U
0 0
deterministic policies stochastic policies

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

N
REINFORCE (Policy Gradient)

@ REINFORCE is an elegant algorithm for maximizing the expected
return R = E,;) [r(7)].
@ Intuition: trial and error

e Sample a rollout 7. If you get a high reward, try to make it more likely.
If you get a low reward, try to make it less likely.

@ Interestingly, this can be seen as stochastic gradient ascent on R.

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

REINFORCE
@ Recall the derivative formula for log: Important Trick!
) ~ &p(7) 9] B 0
g 08 P(7) = o(7) — 59 P(7) = P(7) 55 l0g p(7)

e Gradient of the expected return:

By [r(7)] = 55 3 r(r)p(7)
- Z r(T)3
= Z (7)p(7) |og p(7)

~ By |r(r)800 og ()]

@ Compute stochastic estimates of this expectation by sampling rollouts.

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

e —
REINEF@REE

@ For reference:
0 0
%Ep(r) [f(T)] = lEp(’l’) I'(T)% |Og p(T)

o If you get a large reward, make the rollout more likely. If you get a

small reward, make it less likely.
e Unpacking the REINFORCE gradient:

c)de log p(7) = ilog [p(So)HWe(arlst)Hp(stlst 1, 1)]

0
=50 Ioggwe(at |s¢)

LR
= —|
?:0 90 og me(a: |st)

@ Hence, it tries to make all the actions more likely or less likely,
depending on the reward. l.e., it doesn't do credit assignment.
e This is a topic for next lecture.

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

REINEG@REE
Repeat forever:
Sample a rollout 7 = (sg, ag, s1,a1,...,S7,aT)
r(r) = > h_o sk ak)
Fort=0,...,T:

0 «+ 0 + ar(1) 2 log me(ac | se)

@ Observation: actions should only be reinforced based on future
rewards, since they can't possibly influence past rewards.

@ You can show that this still gives unbiased gradient estimates.
Repeat forever:
rf(T) — Zk t (§ksak)
0 + 6 + ar(7) 25 log me(ac | st)

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

RL for Classification

@ A classification task under RL formulation
@ one time step
state x: an image
action a: a digit class
reward r(x,a): 1 if correct, 0 if wrong
policy m(a|x): a distribution over categories
@ Compute using an MLP with softmax outputs — this is a policy network

e © o ¢

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

RL for Classification

cost cost
0 0
Non-differentiable: OK Discontinuous: not OK

@ Original solution: use a surrogate loss function, e.g.
logistic-cross-entropy

@ RL formulation: in each episode, the agent is shown an image, guesses
a digit class, and receives a reward of 1 if it's right or 0 if it's wrong

@ We'd never actually do it this way, but it will give us an interesting
comparison with backprop.

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

RL for Classification

@ Let z, denote the logits, yx denote the softmax output, t the integer
target, and t, the target one-hot representation.
e To apply REINFORCE, we sample a ~ mg(- | x) and apply:

0« 0+ Ozl’(a,t)% log mg(a|x)

=0 + ar(a, t)a—(i) log ya
0
=0 t — Yk) ==
+ ar(a,);(ak yk)aez;<
@ Compare with the logistic regression SGD update:

0<—9+ailogyt

00
0
+— 0+« Z(tk — yk)%zk
k

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Reward Baselines

@ For reference:

0 «— 0+ ar(a, t)a%9 log mg(a| x)

@ Clearly, we can add a constant offset to the reward, and we get an
equivalent optimization problem.
@ Behavior if r = 0 for wrong answers and r = 1 for correct answers

e wrong: do nothing
e correct: make the action more likely

e If r = 10 for wrong answers and r = 11 for correct answers

e wrong: make the action more likely
o correct: make the action more likely (slightly stronger)

e If r = —10 for wrong answers and r = —9 for correct answers

@ wrong: make the action less likely
o correct: make the action less likely (slightly weaker)

Jimmy Ba and Bo Wang CSC413/2516 Lecture 10: Generative Model

Reward Baselines

@ Problem: the REINFORCE update depends on arbitrary constant

factors added to the reward.

@ Observation: we can subtract a baseline b from the reward without

biasing the gradient.

Ep(r) l(f(f) - b)a% log p(7) | = Ep(r)

= Ep(r)
= Ep(r)
Heads-up: You will show how b can be
selected to reduce variance in HW4. = Ep(r)

()2 108 p(7)
(7). log p(7)]

(7). tog p(7)]

r(T)O% log p(T)- -

0
- bEp(‘r) |:0_9 IOg p(T)]
0
— b p(7) 5 log ()

~b> %p(f)

P

@ We'd like to pick a baseline such that good rewards are positive and

bad ones are negative.

e E[r(7)] is a good choice of baseline, but we can’t always compute it
easily. There's lots of research on trying to approximate it.

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

N
More Tricks

o We left out some more tricks that can make policy gradients work a
lot better.

o Natural policy gradient corrects for the geometry of the space of
policies, preventing the policy from changing too quickly.

e Rather than use the actual return, evaluate actions based on estimates
of future returns. This is a class of methods known as actor-critic,
which we'll touch upon next lecture.

@ Trust region policy optimization (TRPO) and proximal policy
optimization (PPO) are modern policy gradient algorithms which are
very effective for continuous control problems.

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Discussion

@ What's so great about backprop and gradient descent?

o Backprop does credit assignment — it tells you exactly which
activations and parameters should be adjusted upwards or downwards
to decrease the loss on some training example.

e REINFORCE doesn't do credit assignment. If a rollout happens to be
good, all the actions get reinforced, even if some of them were bad.

o Reinforcing all the actions as a group leads to random walk behavior.

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

Discussion

e Why policy gradient?

e Can handle discontinuous cost functions
@ Don't need an explicit model of the environment, i.e. rewards and
dynamics are treated as black boxes
e Policy gradient is an example of model-free reinforcement learning,
since the agent doesn’t try to fit a model of the environment
@ Almost everyone thinks model-based approaches are needed for Al, but
nobody has a clue how to get it to work

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model

' jtodo is to
maX|m|sei'" je.probability
tu ing better.

