





A bit of controversy

Deep Learning: Alchemy or Science?
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Overview: Gradient Descent

Source: https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
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Overview: Learning Rate

@ The learning rate «v is a hyperparameter we need to tune. Here are
the things that can go wrong in batch mode:
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slow progress oscillations

instability

@ Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance (i.e. try 0.1,0.03,0.01,...).
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Overview: Training Curves

@ To diagnose optimization problems,
it's useful to look at training curves:
plot the training cost as a function
of iteration.

e Gotcha: use a fixed subset of the
training data to monitor the
training error. Evaluating on a training
different batch (e.g. the current ost
one) in each iteration adds a /ot of
noise to the curve!

instability
(try a smaller
learning rate)

convergence
(try a larger
learning rate)

convergence

@ Gotcha: it's very hard to tell from
the training curves whether an
optimizer has converged. They can
reveal major problems, but they
can't guarantee convergence.
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Overview: Limitations of Gradient Descent

So far, the cost function 7 has been the average loss over the
training examples:

N N
1 i i
7(8) = Z = 7 22 L 0.0),¢0)
@ By linearity,
] < .
=5 2. V7"
i=1

@ Computing the gradient requires summing over all of the training
examples. This is known as batch training.

e Batch training is impractical if you have a large dataset (e.g. millions
of training examples)!

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 8: Optimization &Gel 7/45



Stochastic Gradient Descent

@ Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example:

0 — 60— av7(e)

@ SGD can make significant progress before it has even looked at all the data!

@ Mathematical justification: if you sample a training example at random, the
stochastic gradient is an unbiased estimate of the batch gradient:

E; [vI9(8)] = zfj = VJ(8).
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Stochastic Gradient Descent

e Batch gradient descent moves directly downhill. SGD takes steps in a
noisy direction, but moves downhill on average.

batch gradient descent stochastic gradient descent
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Trick 1.1: Mini-batch Gradient Descent

@ Problem: if we only look at one training example at a time, we can't
exploit efficient vectorized operations.

o Compromise approach: compute the gradients on a medium-sized
set of training examples, called a mini-batch.

@ Each entire pass over the dataset is called an epoch.

@ Stochastic gradients computed on larger mini-batches have smaller

variance:
Soc] 1 oL
= — Var
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@ The mini-batch size S is a hyperparameter. Typical values are 10 or
100.
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Trick 1.1: Mini-batch Gradient Descent

Let’s talk in codes:
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Trick 1.2: Batch Size

@ The mini-batch size S is a hyperparameter that needs to be set.

e Large batches: converge in fewer weight updates because each

stochastic gradient is less noisy.
o Small batches: perform more weight updates per second because each

one requires less computation.
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E—|
Trick 1.2: Batch Size

@ The mini-batch size S is a hyperparameter that needs to be set.

o Large batches: converge in fewer weight updates because each

stochastic gradient is less noisy.
o Small batches: perform more weight updates per second because each

one requires less computation.

e Claim: If the wall-clock time were proportional to the number of
FLOPs, then S = 1 would be optimal.
e 100 updates with S = 1 requires the same FLOP count as 1 update

with S = 100.
e Rewrite minibatch gradient descent as a for-loop:
S=1 S=100
For k =1,...,100: For k =1,...,100:
Or — 651 —aVIH(6,_,) 0y — 01 — 15 VIT R ()

o All else being equal, you'd prefer to compute the gradient at a fresher
value of 8. So S = 1 is better.
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E— |
Batch Size

@ The reason we don't use S = 1 is that larger batches can take
advantage of fast matrix operations and parallelism.

@ Small batches: An update with $ = 10 isn't much more expensive
than an update with S = 1.

e Large batches: Once S is large enough to saturate the hardware
efficiencies, the cost becomes linear in S.

e Cartoon figure, not drawn to scale:

i
// GPU
time per CPU / training
weight i 74 examples
update // per second
54 GPU _—

e Since GPUs afford more parallelism, they saturate at a larger batch

batch size

batch size

size. Hence, GPUs tend to favor larger batch sizes.
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Batch Size

@ The convergence benefits of larger batches also see diminishing returns.

@ Small batches: large gradient noise, so large benefit from increased batch size

@ Large batches: SGD approximates the batch gradient descent update, so no

further benefit from variance reduction.

Small Batch

full batch

cost
o a

full batch

gradient
distribution
of stochastlc
gradients

Large Batch

Steps to Reach 0.1 Validation Error

y _Steps to Reach 0.3 Validation Error
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Batch Size

(b) Simple CNN on Fashion MNIST

220 Steps to Reach 0.31 Validation AP

TR T I IR GG ShL

Batch Size

(c) ResNet-8 on CIFAR-10

\
2t

Batch Size

(e) ResNet-50 on Open Images

22725277V NINNN
Batch Size

(f) Transformer on LM1B

@ Right: # iterations to reach target validation error as a function of batch size.

(Shallue et al., 2018)
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Trick 1.3: Initialization

Source: Geoffrey Hinton
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Trick 1.3: Initialization

When activation function is linear (or close to linear) :

When activation function is Relu :

A better idea (if possible): Start with a pretrained model!
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Trick 1.3: Initialization
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Trick 1.4: Learning Rate

@ In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

small learning rate large learning rate

2

e Typical strategy:

o Use a large learning rate early in training so you can get close to the
optimum
o Gradually decay the learning rate to reduce the fluctuations
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Trick 1.4: Learning Rate

Source: Geoffrey Hinton
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Learning Rate

@ Warning: by reducing the learning rate, you reduce the fluctuations,
which can appear to make the loss drop suddenly. But this can come
at the expense of long-run performance.

reduce
learning rate

|

error

epoch
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e —
Trick 1.4: Learning Rate

loss

good learning rate

low learning rate

high learning rate

\j

epoch

=> Learning rate decay over time!

step decay:

e.g. decay learning rate by half every few epochs.

exponential decay:

a = aoe_kt

1/t decay:

a=ay/(1+ kt)

Tip in practice: Typically, a grid search involves picking
values approximately on a logarithmic scale, e.g., a learning
rate taken within the set {.1, .01, 10-3, 10-4, 10-5}
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Trick 1.5: SGD with Momentum

The problem with SGD:
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Trick 1.5: SGD with Momentum

The problem with SGD:

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 8: Optimization &Gel 17 /45



S|
Trick 1.5: SGD with Momentum

The problem with SGD:
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Trick 1.5: SGD with Momentum

Source: Geoffrey Hinton
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Trick 1.5: SGD with Momentum

Source: Kosta Derpanis
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Trick 1.5: SGD with Momentum

Source: Kosta Derpanis
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Trick 1.5: SGD with Momentum

Source: Kosta Derpanis
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Trick 1.5: SGD with Momentum

Source: Kosta Derpanis
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Trick 1.5: SGD with Momentum

Source: Kosta Derpanis
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Trick 1.5: SGD with Momentum

Source: Kosta Derpanis

Let’s talk in codes:
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Trick 1.6: RMSProp (optional)

rmsprop: A mini-batch version of rprop

rprop is equivalent to using the gradient but also dividing by the size of the
gradient.

— The problem with mini-batch rprop is that we divide by a different number
for each mini-batch. So why not force the number we divide by to be very
similar for adjacent mini-batches?

rmsprop: Keep a moving average of the squared gradient for each weight

2
MeanSquare(w, t) =0.9 MeanSquare(w, t-1)+0.1 (a%w (t))

Dividing the gradient by \/MeanSquare(w, 1) makes the learning work much
better (Tijmen Tieleman, unpublished).

Introduced in a slide in
Geoff Hinton’s Coursera

class, lecture 6

Cited by several papers as:

[52] T. Tieleman and G. E. Hinton. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.,
2012.
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RMSProp (optional)

Let’s talk in codes:
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Trick 1.7: Adam = Momentum + RMSProp (optional)
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e —
Trick 1.7: Adam = Momentum + RMSProp (optional)
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Trick 1.7: Adam = Momentum + RMSProp (optional)

® Adam combines Momentum and RMSProp
e May not converge to optimal solution

® \Works extremely well in practice! (60k+.citations)
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Adam = Momentum + RMSProp (optional)
Let’s talk in codes:

Adam (Partial)

[ S

MSProp
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Adam = Momentum + RMSProp (optional)
Let’s talk in codes:

Adam (Full)

[ )

MSProp

[ J Bias Correction
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A toy example









B |
Let's take a break!

@ We've focused so far on how to optimize neural nets — how to get
them to make good predictions on the training set.

@ How do we make sure they generalize to data they haven't seen
before?

e Even though the topic is well studied, it's still poorly understood.
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Generalization

Recall: overfitting and underfitting

We'd like to minimize the generalization error, i.e. error on novel examples.
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Generalization

e Training and test error as a function of # training examples and #

parameters:
A A

test

error test
error

training
e training
error
> >
# training examples # parameters
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Our Second Bag of Tricks

@ How can we train a model that's complex enough to model the
structure in the data, but prevent it from overfitting? l.e., how to
achieve low bias and low variance?

@ Our bag of tricks

data augmentation

reduce the number of paramters
weight decay

early stopping
ensembles (combine predictions of different models)

stochastic regularization (e.g. dropout)

@ The best-performing models on most benchmarks use some or all of
these tricks.

® & © o ¢ ¢
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Trick 2.1: Data Augmentation

@ The best way to improve generalization is to collect more data!

@ Suppose we already have all the data we're willing to collect. We can
augment the training data by transforming the examples. This is
called data augmentation.

e Examples (for visual recognition)

e translation

e horizontal or vertical flip

e rotation

e smooth warping

e noise (e.g. flip random pixels)

@ Only warp the training, not the test, examples.

@ The choice of transformations depends on the task. (E.g. horizontal
flip for object recognition, but not handwritten digit recognition.)
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Trick 2.1: Data Augmentation

Typical Image Augmentation

Source: Sourav Kumar
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https://medium.com/@sauravkumarsct?source=post_page-----aa1913468722--------------------------------

.
Trick 2.1: Data Augmentation

Time series data augmentation

(a) Original (b) Jittering

(c) Scaling

(d) Magnitude Warping (e) Rotation

(f) Permutation

(g) Window Slice (h) Time Warping

(i) Window Warping
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Trick 2.1: Data Augmentation

Data Augmentation for NLP

This article will focus on summarizing
data augmentation techniques in NLP.

Synonym
Replacement

This write-up will focus on summarizing
data augmentation methods in NLP.

Source: Shahul ES
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Trick 2.1: Data Augmentation

Data Augmentation for NLP

This article will focus on summarizing
data augmentation techniques in NLP.

Random
Insertion

This article will focus on write-up summarizing
data augmentation techniques in NLP methods.

Source: Shahul ES
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Trick 2.1: Data Augmentation

Data Augmentation for NLP

This article will focus on summarizing
data augmentation techniques in NLP.

Random Swap

This techniques will focus on summarizing data
augmentation article in NLP.

Source: Shahul ES
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Trick 2.1: Data Augmentation

Data Augmentation for NLP

original

augmented

English

I have no time

I do not have time

English

Back-Translation

french

French

translate to I l

I

je n'ai pas le temps

//

translate to

english

Source: Shahul ES
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Trick 2.1: Data Augmentation

Caution!
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Trick 2.2: Reducing the Number of Parameters

@ Can reduce the number of layers or the number of paramters per layer.

@ Adding a linear bottleneck layer is another way to reduce the number of

parameters:

100 units

10,000
connections

100 units

100 units

T 1000 connections

10 units

T 1000 connections

100 units

@ The first network is strictly more expressive than the second (i.e. it can
represent a strictly larger class of functions). (Why?)

@ Remember how linear layers don't make a network more expressive? They

might still improve generalization.
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Trick 2.3: Weight Decay

e We've already seen that we can regularize a network by penalizing
large weight values, thereby encouraging the weights to be small in

magnitude.
A
J
@ We saw that the gradient descent update can be interpreted as

weight decay:
N4 OR
W (8_w 4 ’\0_w>

=w—a<a—j+Aw>

ow
=(1—-al)w — a—g%
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Weight Decay

Why we want weights to be small:

-2 3

J

_—62.0 -1.5 -1.0 =05 00 05 1.0 1.5 20
=015 4 0:2x¢* 4 0.75x® = x> —Dx- 2

y = —7.2x°> + 10.4x* + 24.5x3 — 37.9x® — 3.6x + 12

The red polynomial overfits. Notice it has really large coefficients.
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Weight Decay

Why we want weights to be small:

@ Suppose inputs x; and x» are nearly identical. The following two
networks make nearly the same predictions:

1 1 9/ \11

@) @ @ @

e But the second network might make weird predictions if the test
distribution is slightly different (e.g. x; and x> match less closely).
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Weight Decay

@ The geometric picture:
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Weight Decay

@ There are other kinds of regularizers which encourage weights to be small,
e.g. sum of the absolute values.

@ These alternative penalties are commonly used in other areas of machine learning,
but less commonly for neural nets.

@ Regularizers differ by how strongly they prioritize making weights exactly zero,
vs. not being very large.

O
©

\/ § = N\
v L2 regularization L1 regularization

0 RZZU‘;«" R=Z|u',-|

i i

— Hinton, Coursera lectures — Bishop, Pattern Recognition and Machine Learning
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Trick 2.4: Early Stopping

@ We don't always want to find a global (or even local) optimum of our
cost function. It may be advantageous to stop training early.

validation
error

training
error

# epochs

e Early stopping: monitor performance on a validation set, stop training
when the validtion error starts going up.
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Early Stopping

@ A slight catch: validation error fluctuates because of stochasticity in
the updates.

validation
error

training
error

# epochs

@ Determining when the validation error has actually leveled off can be
tricky.
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Early Stopping

@ Why does early stopping work?

e Weights start out small, so it takes time for them to grow large.
Therefore, it has a similar effect to weight decay.
e If you are using sigmoidal units, and the weights start out small, then
the inputs to the activation functions take only a small range of values.
e Therefore, the network starts out approximately linear, and gradually
becomes more nonlinear (and hence more powerful).
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Trick 2.5: Ensembles

@ If a loss function is convex (with respect to the predictions), you have
a bunch of predictions, and you don’t know which one is best, you are
always better off averaging them.

LOayr+ -+ Auyw, 1) S MLy, ) + -+ AnLlyw, t) for A >0,) A =1

@ This is true no matter where they came from (trained neural net,
random guessing, etc.). Note that only the loss function needs to be
convex, not the optimization problem.

@ Examples: squared error, cross-entropy, hinge loss

e If you have multiple candidate models and don’t know which one is
the best, maybe you should just average their predictions on the test
data. The set of models is called an ensemble.

@ Averaging often helps even when the loss is nonconvex (e.g. 0-1 loss).
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Ensembles

@ Some examples of ensembles:

e Train networks starting from different random initializations. But this
might not give enough diversity to be useful.

e Train networks on differnet subsets of the training data. This is called
bagging.

e Train networks with different architectures or hyperparameters, or even
use other algorithms which aren’t neural nets.

e Ensembles can improve generalization quite a bit, and the winning
systems for most machine learning benchmarks are ensembles.

e But they are expensive, and the predictions can be hard to interpret.
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Trick 2.6: Stochastic Regularization

@ For a network to overfit, its computations need to be really precise. This
suggests regularizing them by injecting noise into the computations, a
strategy known as stochastic regularization.

@ Dropout is a stochastic regularizer which randomly deactivates a subset of

the units (i.e. sets their activations to zero).

b — ¢(z;) with probability 1 — p
710 with probability p,
where p is a hyperparameter.

@ Equivalently,
hj = m; - (z),

where m; is a Bernoulli random variable, independent for each hidden unit.

@ Backprop rule:

zj = hj - mj - ¢'(z)
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Trick 2.6: Stochastic Regularization

Source: Peter Skalski
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Stochastic Regularization

e Dropout can be seen as training an ensemble of 20 different
architectures with shared weights (where D is the number of units):

036
e‘%‘e

0{: ofc

GG
SO

Base network

®96

ol 0| &°

o O Pelg o

Ensemble of subnetworks
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Dropout

Dropout at test time:

@ Most principled thing to do: run the network lots of times
independently with different dropout masks, and average the
predictions.

e Individual predictions are stochastic and may have high variance, but
the averaging fixes this.

@ In practice: don't do dropout at test time, but multiply the weights
by 1—p

e Since the weights are on 1 — p fraction of the time, this matches their
expectation.
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Dropout as an Adaptive Weight Decay

My

Consider a linear regression, y( i) = Z WjX; ) The inputs are droped out

half of the time: y )—22 m Wj J() mNBern(OS) E [y( ]—y(

Enl7) = 55 Z Em[(7 — t0)?]
i=1
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Dropout as an Adaptive Weight Decay

i

Consider a linear regression, y( i) = Z WjX; ) The inputs are droped out

half of the time: 7() = 23", m| Wjj() mNBem(o5) En[70)] = y0.

Enl7) = 55 Z Em[(7 — t0)?]
i=1

The bias-variance decomposition of the squared error gives

Em[J] = 2N Z m[y ] - t( Zvarm[y
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Dropout as an Adaptive Weight Decay

(.

Consider a linear regression, y( i) = Z WjX; ) The inputs are droped out

half of the time: y )—22 m VVJJ() m~Bern(05) Enm[y] = y().

Enl7) = 55 Z Em[(7 )]
i=1 Tips: Var[m_j] = p (1-p)

The bias-variance decomposition of the squared error glves

§ _ () §
En[J] = N m[y ] t Varm[y
Assume weights, inputs and masks are mdependent and E[x] = 0.
N
1 )
_ ~ (i (i ) (1)  (
En[J] = 5N iE_l(]Em[y( ] -tV ;1 % [Valm[2m X; WJ] ]

(i )
Emly t\ E Var[x; ]W
2N [ ] /
Jimmy Ba and Bo V\/anr_r CSC413/2516 Lecture 8: Optamlzatlon &Gel 42 /45



Stochastic Regularization

@ Dropout can help performance quite a bit, even if you're already using

weight decay.
@ Lots of other stochastic regularizers have been proposed:
o Batch normalization (mentioned last week for its optimization benefits)

also introduces stochasticity, thereby acting as a regularizer.
e The stochasticity in SGD updates has been observed to act as a

regularizer, helping generalization.
@ Increasing the mini-batch size may improve training error at the

expense of test error!
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Take-away: Our Bag of Tricks

@ Techniques we just covered:

e data augmentation

reduce the number of paramters

weight decay

early stopping

ensembles (combine predictions of different models)
stochastic regularization (e.g. dropout)

e © 6 ¢ o

@ The best-performing models on most benchmarks use some or all of
these tricks.
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Revisit the Controversy

Your Thoughts?

Deep Learning: Alchemy or Science?
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