
CSC421/2516 Lecture 3:
Automatic Differentiation

& Distributed Representations

Jimmy Ba and Bo Wang

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations1 / 67

Autodiff

Lecture 2 covered the algebraic view of backprop.

Here, we’ll see how to implement an automatic differentiation library:

build the computation graph
vector-Jacobian products (VJP) for primitive ops
the backwards pass

We’ll use Autograd, a lightweight autodiff tool, as an example. The
implementations of PyTorch, TensorFlow, Jax, etc. are very similar.

You will probably never have to implement autodiff yourself but it is
good to know its inner workings.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations2 / 67

Confusing Terminology

Automatic differentiation (autodiff) refers to a general way of taking
a program which computes a value, and automatically constructing a
procedure for computing derivatives of that value.

Backpropagation is the special case of autodiff applied to neural nets

But in machine learning, we often use backprop synonymously with
autodiff

Autograd is the name of a particular autodiff library we will cover in
this lecture. There are many others, e.g. PyTorch, TensorFlow.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations3 / 67

What is Autodiff

An autodiff system will convert the program into a sequence of primitive
operations (ops) which have specified routines for computing derivatives.

In this representation, backprop can be done in a completely mechanical way.

Original program:

z = wx + b

y =
1

1 + exp(−z)

L =
1

2
(y − t)2

Sequence of primitive operations:

t1 = wx

z = t1 + b

t3 = −z
t4 = exp(t3)

t5 = 1 + t4

y = 1/t5

t6 = y − t

t7 = t2
6

L = t7/2

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations4 / 67

What is Autodiff

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations5 / 67

Building the Computation Graph

Most autodiff systems, including Autograd, explicitly construct the
computation graph.

Some frameworks like TensorFlow provide mini-languages for building
computation graphs directly. Disadvantage: need to learn a totally new API.

Autograd instead builds them by tracing the forward pass computation,

allowing for an interface nearly indistinguishable from NumPy.

The Node class (defined in tracer.py) represents a node of the
computation graph. It has attributes:

value, the actual value computed on a particular set of inputs
fun, the primitive operation defining the node
args and kwargs, the arguments the op was called with

parents, the parent Nodes

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations6 / 67

Building the Computation Graph

Autograd’s fake NumPy module provides primitive ops which look and
feel like NumPy functions, but secretly build the computation graph.

Example:

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations7 / 67

Vector-Jacobian Products

For each primitive operation, we must specify VJPs for each of its
arguments. Consider y = exp(x).

This is a function which takes in the output gradient (i.e. y), the
answer (y), and the arguments (x), and returns the input gradient (x)

defvjp (defined in core.py) is a convenience routine for registering
VJPs. It just adds them to a dict.

Examples from numpy/numpy vjps.py

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations8 / 67

Backprop as Message Passing

Backprop as message passing:

Each node receives a bunch
of messages from its
children, which it aggregates
to get its error signal. It
then passes messages to its
parents.

Each of these messages is a VJP.

This formulation provides modularity: each node needs to know how
to compute its outgoing messages, i.e. the VJPs corresponding to
each of its parents (arguments to the function).

The implementation of z doesn’t need to know where z came from.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations9 / 67

Backward Pass

The backwards pass is defined in core.py.

The argument g is the error signal for the end node; for us this is always L = 1.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations10 / 67

Put Everything Together

grad (in differential operators.py) is just a wrapper around make vjp (in
core.py) which builds the computation graph and feeds it to backward pass.

grad itself is viewed as a VJP, if we treat L as the 1× 1 matrix with entry 1.

∂L
∂w

=
∂L
∂w
L

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations11 / 67

Recap

We saw three main parts to the code:

tracing the forward pass to build the computation graph
vector-Jacobian products for primitive ops
the backwards pass

Building the computation graph requires fancy NumPy gymnastics,
but other two items are basically what we have in the last two slides.

You’re encouraged to read the full code (< 200 lines!) at:

https://github.com/mattjj/autodidact/tree/master/autograd

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations12 / 67

https://github.com/mattjj/autodidact/tree/master/autograd

Autodiff Application: Learning to learning by gradient
descent by gradient descent

https://arxiv.org/pdf/1606.04474.pdf

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations13 / 67

https://arxiv.org/pdf/1606.04474.pdf

Autodiff Application: Gradient-Based Hyperparameter
Optimization

https://arxiv.org/abs/1502.03492

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations14 / 67

https://arxiv.org/abs/1502.03492

After the break

After the break: Distributed Representations

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations15 / 67

Distributed Representations

Let’s now take a break from backpropagation and see a real example
of a neural net to learn feature representations of words.

We’ll see a lot more neural net architectures later in the course.

We’ll also introduce the models used in Programming Assignment 1.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations16 / 67

Review: Probability and Bayes’ Rule

Suppose we want to build a speech recognition system.

We’d like to be able to infer a likely sentence s given the observed speech
signal a. The generative approach is to build two components:

An observation model, represented as p(a | s), which tells us how
likely the sentence s is to lead to the acoustic signal a.

A prior, represented as p(s), which tells us how likely a given sentence
s is. E.g., it should know that “recognize speech” is more likely that
“wreck a nice beach.”

Given these components, we can use Bayes’ Rule to infer a posterior
distribution over sentences given the speech signal:

p(s | a) =
p(s)p(a | s)∑
s′ p(s′)p(a | s′)

.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations17 / 67

Language Modeling

From here on, we will focus on learning a good distribution p(s) of
sentences. This problem is known as language modeling.

Assume we have a corpus of sentences s(1), . . . , s(N). The maximum
likelihood criterion says we want our model to maximize the probability
our model assigns to the observed sentences. We assume the sentences are
independent, so that their probabilities multiply.

max
N∏
i=1

p(s(i)).

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations18 / 67

Language Modeling

In maximum likelihood training, we want to maximize
∏N

i=1 p(s(i)).

The probability of generating the whole training corpus is vanishingly small
— like monkeys typing all of Shakespeare.

The log probability is something we can work with more easily. It also
conveniently decomposes as a sum:

log
N∏
i=1

p(s(i)) =
N∑
i=1

log p(s(i)).

This is equivalent to the cross-entropy loss.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations19 / 67

Language Modeling

Probability of a sentence? What does that even mean?

A sentence is a sequence of words w1,w2, . . . ,wT . Using the chain rule of
conditional probability, we can decompose the probability as

p(s) = p(w1, . . . ,wT) = p(w1)p(w2 |w1) · · · p(wT |w1, . . . ,wT−1).

Therefore, the language modeling problem is equivalent to being able to

predict the next word!

We typically make a Markov assumption, i.e. that the distribution over the
next word only depends on the preceding few words. I.e., if we use a context
of length 3,

p(wt |w1, . . . ,wt−1) = p(wt |wt−3,wt−2,wt−1).

Such a model is called memoryless.
Now it’s basically a supervised prediction problem. We need to predict the
conditional distribution of each word given the previous K .

When we decompose it into separate prediction problems this way, it’s called

an autoregressive model.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations20 / 67

N-Gram Language Models

One sort of Markov model we can learn uses a conditional probability table,
i.e.

cat and city · · ·
the fat 0.21 0.003 0.01

four score 0.0001 0.55 0.0001 · · ·
New York 0.002 0.0001 0.48

...
...

Maybe the simplest way to estimate the probabilities is from the empirical
distribution:

p(w3 = cat |w1 = the,w2 = fat) =
p(w1 = the,w2 = fat,w3 = cat)

p(w1 = the,w2 = fat)

≈ count(the fat cat)

count(the fat)

The phrases we’re counting are called n-grams (where n is the length), so
this is an n-gram language model.

So, the above example is considered a 3-gram model.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations21 / 67

N-Gram Language Models

Problems with n-gram language models

The number of entries in the conditional probability table is
exponential in the context length.
Data sparsity: most n-grams never appear in the corpus, even if they
are possible.

Traditional ways to deal with data sparsity

Use a short context (but this means the model is less powerful)
Smooth the probabilities, e.g. by adding imaginary counts
Make predictions using an ensemble of n-gram models with different n

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations22 / 67

N-Gram Language Models

Problems with n-gram language models

The number of entries in the conditional probability table is
exponential in the context length.
Data sparsity: most n-grams never appear in the corpus, even if they
are possible.

Traditional ways to deal with data sparsity

Use a short context (but this means the model is less powerful)
Smooth the probabilities, e.g. by adding imaginary counts
Make predictions using an ensemble of n-gram models with different n

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations22 / 67

Distributed Representations

Conditional probability tables are a kind of localist representation: all the
information about a particular word is stored in one place, i.e. a column of the
table.

But different words are related, so we ought to be able to share information
between them. For instance, consider this matrix of word attributes:

academic politics plural person building
students 1 0 1 1 0
colleges 1 0 1 0 1
legislators 0 1 1 1 0
schoolhouse 1 0 0 0 1

And this matrix of how each attribute influences the next word:

bill is are papers built standing
academic − +
politics + −
plural − +
person +
building + +

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations23 / 67

Imagine these matrices are layers in an MLP. (One-hot representations of words,
softmax over next word.)

Here, the information about a given word is distributed throughout the
representation. We call this a distributed representation.

In general, when we train an MLP with backprop, the hidden units won’t have
intuitive meanings like in this cartoon. But this is a useful intuition pump for what
MLPs can represent.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations24 / 67

Distributed Representations

We would like to be able to share information between related words.
E.g., suppose we’ve seen the sentence

The cat got squashed in the garden on Friday.

This should help us predict the previously unseen words
The dog got flattened in the yard on Monday.

An n-gram model can’t generalize this way, but a distributed
representation might let us do so.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations25 / 67

Neural Language Model

Predicting the distribution of the next word given the previous K is
just a multiway classification problem.

Inputs: previous K words

Target: next word
Loss: cross-entropy. Recall that this is equivalent to maximum
likelihood:

− log p(s) = − log
T∏
t=1

p(wt |w1, . . . ,wt−1)

= −
T∑
t=1

log p(wt |w1, . . . ,wt−1)

= −
T∑
t=1

V∑
v=1

ttv log ytv ,

where tiv is the one-hot encoding for the ith word and yiv is the
predicted probability for the ith word being index v .

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations26 / 67

Bengio’s Neural Language Model

Here is a classic neural probabilistic language model, or just neural
language model:

Bengio�s neural net for predicting the next word

 “softmax” units (one per possible next word)

index of word at t-2 index of word at t-1

learned distributed
encoding of word t-2

learned distributed
encoding of word t-1

units that learn to predict the output word from features of the input words

table look-up table look-up

skip-layer
connections

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations27 / 67

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural Language Model

If we use a 1-of-K encoding for the words, the first layer can be
thought of as a linear layer with tied weights.

The weight matrix basically acts like a lookup table. Each column is
the representation of a word, also called an embedding, feature
vector, or encoding.

“Embedding” emphasizes that it’s a location in a high-dimensonal
space; words that are closer together are more semantically similar
“Feature vector” emphasizes that it’s a vector that can be used for
making predictions, just like other feature mappigns we’ve looked at
(e.g. polynomials)

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations28 / 67

Neural Language Model

What do these word embeddings look like?
The following 2-D embeddings are done with an algorithm called
tSNE which tries to make distnaces in the 2-D embedding match the
original 30-D distances as closely as possible.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations29 / 67

Neural Language Model

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations30 / 67

Neural Language Model

Thinking about high-dimensional embeddings

Most vectors are nearly orthogonal (i.e. dot product is close to 0)
Most points are far away from each other
“In a 30-dimensional grocery store, anchovies can be next to fish and
next to pizza toppings.” – Geoff Hinton

The 2-D embeddings might be fairly misleading, since they can’t
preserve the distance relationships from a higher-dimensional
embedding. (I.e., unrelated words might be close together in 2-D, but
far apart in 30-D.)

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations31 / 67

GloVe: Neural Language Model as Matrix Factorization

Fitting language models is really hard.

Maybe this is overkill if all you want is word representations.

Global Vector (GloVe) embeddings are a simpler and faster approach
based on a matrix factorization similar to principal component
analysis (PCA).

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations32 / 67

GloVe: Neural Language Model as Matrix Factorization

Distributional hypothesis again: words with similar distributions have
similar meanings (“judge a word by the company it keeps”)

Consider a co-occurrence matrix X, which counts the number of times
two words appear nearby (say, less than 5 positions apart)

This is a V × V matrix, where V is the vocabulary size (very large)

Intuition pump: suppose we fit a rank-K approximation X ≈ RR̃>,
where R and R̃ are V × K matrices.

Each row ri of R is the K -dimensional representation of a word
Each entry is approximated as xij ≈ r>i r̃j
Hence, more similar words are more likely to co-occur
Minimizing the squared Frobenius norm
‖X− RR̃>‖2

F =
∑

i,j(xij − r>i r̃j)
2 is basically PCA.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations33 / 67

GloVe

Problem 1: X is extremely large, so fitting the above factorization
uisng least squares is infeasible.

Solution: Reweight the entries so that only nonzero counts matter

Problem 2: Word counts are a heavy-tailed distribution, so the most
common words will dominate the cost function.

Solution: Approximate log xij instead of xij .

Global Vector (GloVe) embedding cost function:

J (R) =
∑
i,j

f (xij)(r>i r̃j + bi + b̃j − log xij)
2

f (xij) =

{(xij
100

)3/4
if xij < 100

1 if xij ≥ 100

bi and b̃j are bias parameters.

We can avoid computing log 0 since f (0) = 0.

We only need to consider the nonzero entries of X. This gives a big
computational savings since X is extremely sparse!

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations34 / 67

Word Analogies

Here’s a linear projection of word representations for cities and capitals into
2 dimensions.

The mapping city → capital corresponds roughly to a single direction in the
vector space:

Note: this figure actually comes from skip-grams, a predecessor to GloVe.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations35 / 67

Word Analogies

In other words,
vector(Paris)− vector(France) ≈ vector(London)− vector(England)

This means we can analogies by doing arithmetic on word vectors:

e.g. “Paris is to France as London is to ”
Find the word whose vector is closest to
vector(France)− vector(Paris) + vector(London)

Example analogies:

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations36 / 67

After the break

After the break: Optimization

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations37 / 67

Optimization

So far, we’ve talked a lot about computing gradients and different
neural models.

How do we actually train those models using gradients?

There are various things that can go wrong in gradient descent, we
will learn what to do about them, e.g.

How to tune the learning rates.

For convenience in this part, let’s group all the parameters (weights
and biases) of our network into a single vector θ.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations38 / 67

Features of the Optimization Landscape

convex functions local minima saddle points

plateaux

narrow ravines
cliffs (covered in a

later lecture)

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations39 / 67

Review: Hessian Matrix

The Hessian matrix, denoted H, or ∇2J is the matrix of second
derivatives:

H = ∇2J =


∂2J
∂θ2

1

∂2J
∂θ1∂θ2

· · · ∂2J
∂θ1∂θD

∂2J
∂θ2∂θ1

∂2J
∂θ2

2
· · · ∂2J

∂θ2∂θD
...

...
. . .

...
∂2J

∂θD∂θ1

∂2J
∂θD∂θ2

· · · ∂2J
∂θ2

D


It’s a symmetric matrix because ∂2J

∂θi∂θj
= ∂2J

∂θj∂θi
.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations40 / 67

Review: Hessian Matrix

Locally, a function can be approximated by its second-order Taylor
approximation around a point θ0:

J (θ) ≈ J (θ0) +∇J (θ0)>(θ − θ0) + 1
2 (θ − θ0)>H(θ0)(θ − θ0).

A critical point is a point where the gradient is zero. In that case,

J (θ) ≈ J (θ0) + 1
2 (θ − θ0)>H(θ0)(θ − θ0).

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations41 / 67

Review: Hessian Matrix

Why do we need Hessian: A lot of important features of the
optimization landscape can be characterized by the eigenvalues of the
Hessian H.

Recall that a symmetric matrix (such as H) has only real eigenvalues,
and there is an orthogonal basis of eigenvectors.

This can be expressed in terms of the spectral decomposition:

H = QΛQ>,

where Q is an orthogonal matrix (whose columns are the
eigenvectors) and Λ is a diagonal matrix (whose diagonal entries are
the eigenvalues).

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations42 / 67

Review: Hessian Matrix

We often refer to H as the curvature of a function.

Suppose you move along a line defined by θ + tv for some vector v.

Second-order Taylor approximation:

J (θ + tv) ≈ J (θ) + t∇J (θ)>v +
t2

2
v>H(θ)v

Hence, in a direction where v>Hv > 0, the cost function curves
upwards, i.e. has positive curvature. Where v>Hv < 0, it has negative
curvature.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations43 / 67

Review: Hessian Matrix

A matrix A is positive definite if v>Av > 0 for all v 6= 0. (I.e., it
curves upwards in all directions.)

It is positive semidefinite (PSD) if v>Av ≥ 0 for all v 6= 0.

Equivalently: a matrix is positive definite iff all its eigenvalues are
positive. It is PSD iff all its eigenvalues are nonnegative. (Exercise:
show this using the Spectral Decomposition.)

For any critical point θ∗, if H(θ∗) exists and is positive definite, then
θ∗ is a local minimum (since all directions curve upwards).

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations44 / 67

Review: Convex Functions

Recall: a set S is convex if for any x0, x1 ∈ S,

(1− λ)x0 + λx1 ∈ S for 0 ≤ λ ≤ 1.

A function f is convex if for any x0, x1,

f ((1− λ)x0 + λx1) ≤ (1− λ)f (x0) + λf (x1)

Equivalently, the set of
points lying above the
graph of f is convex.

Intuitively: the function
is bowl-shaped.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations45 / 67

Review: Convex Functions

If J is smooth (more precisely, twice differentiable), there’s an
equivalent characterization in terms of H:

A smooth function is convex iff its Hessian is positive semidefinite
everywhere.

Exercise: show that squared error, logistic-cross-entropy, and
softmax-cross-entropy losses are convex (as a function of the network
outputs) by taking second derivatives.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations46 / 67

Review: Convex Functions

For a linear model,
z = w>x + b is a linear
function of w and b. If
the loss function is
convex as a function of
z , then it is convex as a
function of w and b.

Hence, linear regression,
logistic regression, and
softmax regression are
convex.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations47 / 67

Local Minima

If a function is convex, it has no spurious local minima, i.e. any local
minimum is also a global minimum.

This is very convenient for optimization since if we keep going
downhill, we’ll eventually reach a global minimum.

Unfortunately, training a network with hidden units cannot be convex
because of permutation symmetries.

I.e., we can re-order the hidden units in a way that preserves the
function computed by the network.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations48 / 67

Local Minima

Special case: a univariate function is convex iff its second derivative is
nonnegative everywhere.

By definition, if a function J is convex, then for any set of points
θ1, . . . ,θN in its domain,

J (λ1θ1 + · · ·+λNθN) ≤ λ1J (θ1) + · · ·+λNJ (θN) for λi ≥ 0,
∑
i

λi = 1.

Because of permutation symmetry, there are K ! permutations of the
hidden units in a given layer which all compute the same function.

Suppose we average the parameters for all K ! permutations. Then we
get a degenerate network where all the hidden units are identical.

If the cost function were convex, this solution would have to be better
than the original one, which is ridiculous!

Hence, training multilayer neural nets is non-convex.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations49 / 67

Saddle points

A saddle point is a point where:

∇J (θ) = 0

H(θ) has some positive and some negative eigenvalues, i.e. some
directions with positive curvature and some with negative curvature.

When would saddle points be a problem?

If we’re exactly on the saddle point, then we’re stuck.

If we’re slightly to the side, then we can get unstuck.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations50 / 67

Saddle points

Suppose you have two hidden units with identical incoming and
outgoing weights.

After a gradient descent update, they will still have identical weights.
By induction, they’ll always remain identical.

But if you perturbed them slightly, they can start to move apart.

Important special case: don’t initialize all your weights to zero!

Instead, break the symmetry by using small random values.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations51 / 67

Plateaux

A flat region is called a plateau. (Plural: plateaux)

Examples of plateaux:

0–1 loss

hard threshold activations

logistic activations & least squares

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations52 / 67

Plateaux

An important example of a plateau is a saturated unit. This is when
it is in the flat region of its activation function. Recall the backprop
equation for the weight derivative:

zi = hi φ
′(z)

wij = zi xj

If φ′(zi) is always close to zero, then the weights will get stuck.

If there is a ReLU unit whose input zi is always negative, the weight
derivatives will be exactly 0. We call this a dead unit.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations53 / 67

Ill-conditioned curvature

Long, narrow ravines:

Suppose H has some large positive eigenvalues (i.e. high-curvature
directions) and some eigenvalues close to 0 (i.e. low-curvature directions).

Gradient descent bounces back and forth in high curvature directions and
makes slow progress in low curvature directions.

To interpret this visually: the gradient is perpendicular to the contours.

This is known as ill-conditioned curvature. It’s very common in neural net
training.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations54 / 67

Ill-conditioned curvature: gradient descent dynamics

To understand why ill-conditioned curvature is a problem, consider a
convex quadratic objective

J (θ) =
1

2
θ>Aθ,

where A is PSD.

Gradient descent update:

θk+1 ← θk − α∇J (θk)

= θk − αAθk

= (I− αA)θk

Solving the recurrence,

θk = (I− αA)kθ0

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations55 / 67

Ill-conditioned curvature: gradient descent dynamics

We can analyze matrix powers such as (I− αA)kθ0 using the spectral
decomposition.

Let A = QΛQ> be the spectral decomposition of A.

(I− αA)kθ0 = (I− αQΛQ>)kθ0

= [Q(I− αΛ)Q>]kθ0

= Q(I− αΛ)kQ>θ0

Hence, in the Q basis, each coordinate gets multiplied by (1− αλi)k ,
where the λi are the eigenvalues of A.

Cases:

0 < αλi ≤ 1: decays to 0 at a rate that depends on αλi
1 < αλi ≤ 2: oscillates
αλi > 2: unstable (diverges)

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations56 / 67

Tuning Learning Rate

How can spectral decomposition help?

The learning rate α is a hyperparameter we need to tune. Here are
the things that can go wrong:

α too small:
slow progress

α too large:
oscillations

α much too large:
instability (diverges)

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations57 / 67

Ill-conditioned curvature: gradient descent dynamics

Just showed

0 < αλi ≤ 1: decays to 0 at a rate that depends on αλi
1 < αλi ≤ 2: oscillates
αλi > 2: unstable (diverges)

Ill-conditioned curvature bounds the maximum learning rate
choice. Need to set the learning rate α < 2/λmax to prevent
instability, where λmax is the largest eigenvalue, i.e. maximum
curvature.

This bounds the rate of progress in another direction:

αλi <
2λi
λmax

.

The quantity λmax/λmin is known as the condition number of A.
Larger condition numbers imply slower convergence of gradient
descent.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations58 / 67

Ill-conditioned curvature: gradient descent dynamics

The analysis we just did was for a quadratic toy problem

J (θ) =
1

2
θ>Aθ.

It can be easily generalized to a quadratic not centered at zero, since
the gradient descent dynamics are invariant to translation.

J (θ) =
1

2
θ>Aθ + b>θ + c

Since a smooth cost function is well approximated by a convex
quadratic (i.e. second-order Taylor approximation) in the vicinity of a
(local) optimum, this analysis is a good description of the behavior of
gradient descent near a (local) optimum.

If the Hessian is ill-conditioned, then gradient descent makes slow
progress towards the optimum.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations59 / 67

Ill-conditioned curvature: normalization

Suppose we have the following dataset for linear regression.

x1 x2 t
114.8 0.00323 5.1
338.1 0.00183 3.2

98.8 0.00279 4.1
...

...
...

wi = y xi

Which weight, w1 or w2, will receive a larger gradient descent update?

Which one do you want to receive a larger update?

Note: the figure vastly understates the narrowness of the ravine!

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations60 / 67

Ill-conditioned curvature: normalization

Or consider the following dataset:

x1 x2 t
1003.2 1005.1 3.3
1001.1 1008.2 4.8

998.3 1003.4 2.9
...

...
...

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations61 / 67

Ill-conditioned curvature: normalization

To avoid these problems, it’s a good idea to center your inputs to
zero mean and unit variance, especially when they’re in arbitrary units
(feet, seconds, etc.).

x̃j =
xj − µj
σj

Hidden units may have non-centered activations, and this is harder to
deal with.

One trick: replace logistic units (which range from 0 to 1) with tanh
units (which range from -1 to 1)
A recent method called batch normalization explicitly centers each
hidden activation. It often speeds up training by 1.5-2x, and it’s
available in all the major neural net frameworks.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations62 / 67

Momentum

Unfortunately, even with these normalization tricks, ill-conditioned
curvature is a fact of life. We need algorithms that are able to deal
with it.

Momentum is a simple and highly effective method. Imagine a hockey
puck on a frictionless surface (representing the cost function). It will
accumulate momentum in the downhill direction:

p← µp− α∂J
∂θ

θ ← θ + p

α is the learning rate, just like in gradient descent.

µ is a damping parameter. It should be slightly less than 1 (e.g. 0.9
or 0.99). Why not exactly 1?

If µ = 1, conservation of energy implies it will never settle down.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations63 / 67

Momentum

In the high curvature directions, the
gradients cancel each other out, so
momentum dampens the oscillations.

In the low curvature directions, the
gradients point in the same direction,
allowing the parameters to pick up speed.

If the gradient is constant (i.e. the cost surface is a plane), the parameters
will reach a terminal velocity of

− α

1− µ
· ∂J
∂θ

This suggests if you increase µ, you should lower α to compensate.

Momentum sometimes helps a lot, and almost never hurts.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations64 / 67

Ravines

Even with momentum and normalization tricks, narrow ravines are
still one of the biggest obstacles in optimizing neural networks.

Empirically, the curvature can be many orders of magnitude larger in
some directions than others!

An area of research known as second-order optimization develops
algorithms which explicitly use curvature information (second
derivatives), but these are complicated and difficult to scale to large
neural nets and large datasets.

There is an optimization procedure called Adam which uses just a
little bit of curvature information and often works much better than
gradient descent. It’s available in all the major neural net frameworks.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations65 / 67

RMSprop and Adam

Recall: Gradient descent takes large steps in directions of high
curvature and small steps in directions of low curvature.

RMSprop is a variant of GD which rescales each coordinate of the
gradient to have norm 1 on average. It does this by keeping an
exponential moving average sj of the squared gradients.

The following update is applied to each coordinate j independently:

sj ← (1− γ)sj + γ[∂J∂θj]2

θj ← θj −
α

√
sj + ε

∂J
∂θj

If the eigenvectors of the Hessian are axis-aligned (dubious
assumption), then RMSprop can correct for the curvature. In
practice, it typically works slightly better than SGD.

Adam = RMSprop + momentum

Both optimizers are included in TensorFlow, Pytorch, etc.
Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations66 / 67

Recap

We’ve seen how to analyze the typical phenomena in optimization:

Local minima: neural nets are not convex.
Saddle points: Hessian has both positive and negative eigenvalues.
Occurs when there are weight symmetries upon initialization.
Plateaux: Jacobian close to zero, e.g. dead neurons.
Ill-conditioned cuvature (ravines): Hessian has extremely large and
very small positive eigenvalues. Affect the largest possible learning rate
before divergence.

You will likely encounter some of these problems when training neural
nets.

This lecture helps understanding the causes of these phenomena. We
will discuss the workarounds in a future lecture.

Jimmy Ba and Bo Wang CSC421/2516 Lecture 3: Automatic Differentiation & Distributed Representations67 / 67

