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Course information

@ Expectations and marking (undergrads)
o Written homeworks (30% of total mark)
o Due Thurs nights at 11:59pm
o first homework is out, due 1/28
@ 2-3 short conceptual questions
o Use material covered up through Tuesday of the preceding week
o 4 programming assignments (40% of total mark)
@ Python, PyTorch
@ 10-15 lines of code
@ may also involve some mathematical derivations
@ give you a chance to experiment with the algorithms
e Exams
o midterm (10%), due Feb 09, covering the first 4 lectures
e final project (20%)

@ See Course Information handout for detailed policies
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Course information

e Final Projects (undergrad and grad students)
e Form a group: 2-3 persons
o Undergrads can collaborate with grad students

o Contributions have to be stated in the final report
@ Students from different backgrounds are encouraged to form a group

e Proposal
@ One-page summary of the main topics
o Deadline: TBD

e Final report

o tutorial (How to Write a Good Course Project Report , Feb 11)
o 4 pages (excluding references)

o Open review format

@ Deadline: TBD
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|
What is Artificial Intelligence (Al)?
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|
What is Artificial Intelligence (Al)?
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What makes Al so successful?

Steering: Business
O®
B

Qil: Data

Engine:
Algorithms

Wheels :
Computing

A-B-C-D

@ The purpose of this class is to teach you how the Al engine works.
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Recap: Linear Classification and Gradient Descent
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@ Advantages: Easy to understand and implement; Widely-adopted;
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Limits of Linear Classification

@ Single neurons (linear classifiers) are very limited in expressive power.

@ XOR is a classic example of a function that's not linearly separable.

X2

x1

@ There's an elegant proof using convexity.
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Limits of Linear Classification

Convex Sets

N\

@ A set S is convex if any line segment connecting points in S lies
entirely within S. Mathematically,

x;,%2€S = M+ (1-ANxxeS for0<A<1.

@ A simple inductive argument shows that for x1,...,xy € S, weighted
averages, or convex combinations, lie within the set:

Aixi+--+Auxy €S for \; >0, A\ +--- Ay =1
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Limits of Linear Classification

Showing that XOR is not linearly separable

@ Half-spaces are obviously convex.

@ Suppose there were some feasible hypothesis. If the positive examples are in
the positive half-space, then the green line segment must be as well.

@ Similarly, the red line segment must line within the negative half-space.

@ But the intersection can't lie in both half-spaces. Contradiction!

10/61
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Limits of Linear Classification

A more troubling example

CCm T mm w0 pattern A CCmeTmsTTTTTO) pattern B
O mm w10 pattern A O rmsrT w11 pattern B
T Tmm Pattern A commTTTT T wms  pattern B

@ These images represent 16-dimensional vectors. White = 0, black = 1.

@ Want to distinguish patterns A and B in all possible translations (with
wrap-around)

@ Translation invariance is commonly desired in vision!

Translation Invariance
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Limits of Linear Classification

A more troubling example

Com T mm w0 pattern A CCmmoTmsTTiTITO) pattern B
Crrm w10 pattern A CrrmmTTmm T pattern B

e e Pattern A T mms  pattern B

@ These images represent 16-dimensional vectors. White = 0, black = 1.

@ Want to distinguish patterns A and B in all possible translations (with
wrap-around)

@ Translation invariance is commonly desired in vision!

@ Suppose there's a feasible solution. The average of all translations of A is the
vector (0.25,0.25,...,0.25). Therefore, this point must be classified as A.

@ Similarly, the average of all translations of B is also (0.25,0.25,...,0.25).
Therefore, it must be classified as B. Contradiction!

Credit=Geoffrey Hinton
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Limits of Linear Classification

@ Sometimes we can overcome this limitation using feature maps, just
like for linear regression. E.g., for XOR:

X1

P(x)=| x

X1X2
1 x| g1(x)  da(x)  ¢3(x) | t
0 O 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

@ This is linearly separable. (Try it!)

@ Not a general solution: it can be hard to pick good basis functions.
Instead, we'll use neural nets to learn nonlinear hypotheses directly.
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N
After the break

After the break: Multilayer Perceptrons
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Multilayer Perceptrons

@ We can connect lots of an output
units together into a ung
directed acyclic graph.

@ This gives a feed-forward
neural network. That's
in contrast to recurrent
neural networks, which
can have cycles. (We'll
talk about those later.)

a hidden
unit

) ) | aconnection
o Typically, units are deoth
ept an input

grouped together into unit
layers.
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output layer

second hidden layer

first hidden layer

input layer
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Multilayer Perceptrons

@ Each layer connects N input units to M output units.

@ In the simplest case, all input units are connected to all output units. We call this
a fully connected layer. We'll consider other layer types later.

@ Note: the inputs and outputs for a layer are distinct from the inputs and outputs
to the network.

@ Recall from softmax regression: this means we | . N
need an M x N weight matrix. \ “

@ The output units are a function of the input

units:
y = f(x) = ¢ (Wx +b)

@ A multilayer network consisting of fully
connected layers is called a multilayer
perceptron. Despite the name, it has nothing
to do with perceptrons!
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Multilayer Perceptrons

Some activation functions:

Li Hard Threshold Logistic
inear

1 ifz>0 1
y=z Y= 0 ifz<o Y =1 e
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Multilayer Perceptrons

Some activation functions:

Hyperbolic Tangent Rectified Linear Unit

(tanh) (ReLU) Soft RelLU
y:i y:max(O,z) y:|0g1+€
e+ e %
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Multilayer Perceptrons

Designing a network to compute XOR:

Assume hard threshold activation function

1

1 ‘@ 1
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Multilayer Perceptrons

Exercise: Could you come up with another set of weights to compute
XOR?
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Multilayer Perceptrons

@ Each layer computes a function, so the network
computes a composition of functions:

y [©O O
h(M) = r((x) &)

h® — £2)(n(V)

f(3)m
: O O O
y = f(L)(h(L—l))

@ Or more simply: h) l:O Q:|Q

y=FfBo...0 f(l)(x).

@ Neural nets provide modularity: we can implement
each layer's computations as a black box.

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 2: Multilayer Percepti 21/61



Feature Learning

@ Neural nets can be viewed as a way of learning features:

linear regressor.
/ clasifier
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Feature Learning

@ Neural nets can be viewed as a way of learning features:

linear regressor.
/ clasifier

@ The goal:
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Feature Learning

Input representation of a digit : 784 dimensional vector.

Jimmy Ba and Bo Wan (CSC413/2516 Lecture 2: Multilayer Percepti 23 /61



Feature Learning

Each first-layer hidden unit computes o(w; x)
Here is one of the weight vectors (also called a feature).
It's reshaped into an image, with gray = 0, white = +, black = -.

To compute w,-Tx, multiply the corresponding pixels, and sum the result.
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-
Feature Learning

There are 256 first-level features total. Here are some of them.
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Expressive Power

@ We've seen that there are some functions that linear classifiers can't
represent. Are deep networks any better?

@ Any sequence of linear layers can be equivalently represented with a

single linear layer.
y = WOWOW® x
————
2w/

o Deep linear networks are no more expressive than linear regression!
o Linear layers do have their uses — stay tuned!
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Expressive Power

o Multilayer feed-forward neural nets with nonlinear activation functions
are universal approximators: they can approximate any function
arbitrarily well.

@ This has been shown for various activation functions (thresholds,
logistic, ReLU, etc.)

e Even though ReLU is “almost” linear, it's nonlinear enough!
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-
Expressive Power
Universality for binary inputs and targets:

@ Hard threshold hidden units, linear output

o Strategy: 2P hidden units, each of which responds to one particular
input configuration

xr1 T I3 t

@ Only requires one hidden layer, though it needs to be extremely wide!
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Expressive Power

@ What about the logistic activation function?

@ You can approximate a hard threshold by scaling up the weights and
biases:

1

0.8

0.6+

0.4

02-

R R S S S R R

y = o(x) y = o(5%)

@ This is good: logistic units are differentiable, so we can tune them
with gradient descent. (Stay tuned!)
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Expressive Power

@ Limits of universality
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Expressive Power

@ Limits of universality

e You may need to represent an exponentially large network.
o If you can learn any function, you'll just overfit.
o Really, we desire a compact representation!
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Expressive Power

@ Limits of universality
e You may need to represent an exponentially large network.
o If you can learn any function, you'll just overfit.
o Really, we desire a compact representation!

@ We've derived units which compute the functions AND, OR, and
NOT. Therefore, any Boolean circuit can be translated into a
feed-forward neural net.

e This suggests you might be able to learn compact representations of
some complicated functions
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N
After the break

After the break: Backpropagation
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Overview

@ We've seen that multilayer neural networks are powerful. But how can
we actually learn them?
@ Backpropagation is the central algorithm in this course.

e lIt's is an algorithm for computing gradients.
o Really it's an instance of reverse mode automatic differentiation,
which is much more broadly applicable than just neural nets.
@ This is “just” a clever and efficient use of the Chain Rule for derivatives.
o We'll see how to implement an automatic differentiation system next
week.
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-
Recap: Gradient Descent

@ Recall: gradient descent moves opposite the gradient (the direction of
steepest descent) <

0,5 : A
oo 500 0 500 1000 1500 2000
0

@ Weight space for a multilayer neural net: one coordinate for each weight or
bias of the network, in all the layers

@ Conceptually, not any different from what we've seen so far — just higher
dimensional and harder to visualize!

@ We want to compute the cost gradient dJ/dw, which is the vector of
partial derivatives.

e This is the average of d£/dw over all the training examples, so in this
lecture we focus on computing d£/dw.
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Recap : Univariate Chain Rule

@ We've already been using the univariate Chain Rule.

@ Recall: if f(x) and x(t) are univariate functions, then

d df dx
af(x(t)) = de
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|
Recap: Computation Graph

@ A computational graph is a directed graph where the nodes
correspond to operations or variables.

@ Variables can feed their value into operations, and operations can
feed their output into other operations. This way, every node in the
graph defines a function of the variables.

@ For example : we want to plot the operation z = x + y, then

0
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|
Recap: Computation Graph

@ A computational graph is a directed graph where the nodes
correspond to operations or variables.

@ Variables can feed their value into operations, and operations can
feed their output into other operations. This way, every node in the
graph defines a function of the variables.

@ Another example : we want to plot the operation f = (x + y) x b, then

B
0 —
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A simple example

f(X,y7Z):(X—|—y)*Z
g=x+y,f=q*z
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A simple example : Forward Pass

f(x,y,z)=(x+y)*z

-.L
-
w

g=x+y,f=qxz
eg,x=—-1y=22z=3
then,q =1,f = -3

O OF oF
"Ox’ 0y’ Oz

Wa
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A simple example : Backward Pass

-.L
N
w

f(x,y,z) =(x+y)*z

g=x+y,f=qxz ° & |

eg,x=—-1y=22z=3
of _
of

HN
-

baseline : 1

-ll»
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A simple example : Backward Pass

flx,y,z) =(x+y)*z

g=x+y,f=qx*xz 1
H . 5
eg,x=-1y=2z=3 ° B
baseline : or _ 1 ’ 1
Cof
of  Of Of °
9z " ofoz 9 B
of _ofof _ . _ 4
dqg Ofdg =~
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A simple example : Backward Pass

f(x,y,z)=(x+y)*z

g=x+y f=qx*z B ! 3

eg,x=-1y=2z=3 2 "3 7 *1'
o900y s
ox  0qox N 3
[

8f_6f8q__ _
@_%@_( )* (1) =-3
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A more complex example: logistic least squares model

Recall: Univariate logistic least squares model

Z=wx-+b
y=o0(2)
_1 2

Let’'s compute the loss derivatives.
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Univariate Chain Rule
How you would have done it in calculus class

L= %(O’(WX-{- b) —t)?

oL 9 [
— (o(wx + b) — t)?
oL @ 1( (- b) — 12 ob  ob
ow  ow 10 b 2
1 75%(0(Wx+ )— 1)

= 77(0'(WX +b) — t)2
2w 5 :(o(wx+b)7t)%(a(wx+b)7t)
(cr(wx—‘,—b)—t)a (o(wx + b) — t) 9
= (o(wx + b) — t)o’ (wx + b)%(wx + b)

7]
= (o(wx + b) — t)o’ (wx + b)(9 (wx + b) — (o(wx + b) — t)o" (wx + b)

= (o(wx + b) — t)o’ (wx + b)x
What are the disadvantages of this approach?
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Univariate Chain Rule

@ We can diagram out the computations using a computation graph.

@ The nodes represent all the inputs and computed quantities, and the
edges represent which nodes are computed directly as a function of
which other nodes.

Compute Loss
_—

T t

>~

"

Compute Derivatives
—
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-
A more structured way to do it

Compute Loss
s

t
’U)>‘>Z—>y—> L

b/

Compute Derivatives
-

Z.

Computing the derivatives:

Computing the loss: dr
— =y — t
z=wx+b dz .
dc _dL ,
y Z(Z) &z o'(z)
L=3y- t)? oc _dc
ow dz
oL dL
ob  dz
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Univariate Chain Rule

A slightly more convenient notation:

@ Use ¥ to denote the derivative d£/dy, sometimes called the error signal.

@ This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

@ This is not a standard notation, but | couldn’t find another one that | liked.

Computing the loss: Computing the derivatives:

z=wx+b V=y—t

y =0(2) z=yod'(2)
1 _
ﬁ:i(y_t)Q W =ZX
b=z
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N
After the break

After the break: Back-propagation in Multivariate Forms
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Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 17
This requires the multivariate Chain Rule!

L,-Regularized regression Multiclass logistic regression

t [)1

Z.
t
%Z_’y—*L;:ﬁ reg N _>y1\}‘
w >R $2—>22——y2/7
ey ta
z=wx+b b2 Wy
w22
y=o0(z2) 5
1 zp = weiXj + be
L=-(y— t)2 K
2
1, e
R = éwm Yk = Ej;;;;
Lreg = L+ AR £:72tklogyk
K
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N
Multivariate Chain Rule

@ Suppose we have a function f(x, y) and functions x(t) and y(t). (All
the variables here are scalar-valued.) Then

SO0 = S+ T < >

o Example:
flx,y)=y+e¥
x(t) = cost
y(t) = ¢
@ Plug in to Chain Rule:
df  Of dx 4 of of dy
dt ~ oxdt Oy dt
= (ye¥) - (—sint) + (1 + xe™) - 2t
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N
Multivariable Chain Rule

@ In the context of backpropagation:

Mathematical expressions
to be evaluated

Af _ofdr  ofdy

dt ~ 9z dt ' Oy dt \x/
\*t NN f
Values already computed ’ \ -
by our program / y/

@ In our notation:
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|
Backpropagation

Full backpropagation algorithm:

Let vq,..., vy be a topological ordering of the computation graph
(i.e. parents come before children.)

vy denotes the variable we're trying to compute derivatives of (e.g. loss).

Fori:=1,...,N

forward pass
Compute v; as a function of Pa(v;)

backward pass | Fori=N-—1,....1

T — e Ov;
Vi = ZjeCh(m) Vi Bu,
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-
Backpropagation
Example: univariate logistic least squares regression

" t Backward pass:

e

__ _dy
w >R 77— ALres =Yz
Forward - AR =70'(2)
rwar . —
orwa pass = Lrog A . (,)72 . @
z=wx+b L = LCreg ALreg T ow dw
y:a(z) ac =Zx+Rw
i 2 - L b=z
=50 =1 y=T ac b
r_1l.2 dy =z
-2 =L(y—t)
Lres = L+ AR
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Backpropagation

Multilayer Perceptron (multiple outputs):

1 ,
u%l (1) “1|

owly : wyy
M”:2§>x MJ:iiyx ¢

T1—2 1—>h 1—>y 1\

X 2—»22—>h2%>y2

ll);

Forward pass:

zZi = Z W'.(II)XJ + bl(l)
J

h,' = O’(Z,')

5> ’
=z Yi — tk
> - )
k
Jimmy Ba and Bo Wang (CSC413/2516 Lecture 2:

T

Backward pass:

L=
Wzﬁ()/k— ti)
w? =yich;
b2 =y
B =Y yow;
k
272:770'(L)
wj!) =i
b =%

Multilayer Percepti
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Vector Form

@ Computation graphs showing individual units are cumbersome.

@ As you might have guessed, we typically draw graphs over the
vectorized variables.
w® w2 1,\‘

b b®

@ We pass messages back analogous to the ones for scalar-valued nodes.
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Vector Form

@ Consider this computation graph:

z 1
z 2 Z—Y
Z3—Y3
@ Backprop rules:
_ __ Oy _ oy
eRN,ye RM - 9Yk _ Ay
z y % Z , 0z; z 0z y

k
where 9y/0z is the Jacobian matrix (note: check the matrix shapes):

Iy .. On
) )
(8y) = o
A JMxN — : . :
0z Oym .. Oym
0z1 0zn
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Vector Form

Examples
o Matrix-vector product

z=wx  Z_w  x-—w'z
Ox
@ Elementwise operations
exp(z1) 0
y = exp(z) _ K Z=exp(z)oy
0z :
0 exp(zp)

@ Note: we never explicitly construct the Jacobian. It's usually simpler
and more efficient to compute the Vector Jacobian Product (VJP)
directly.
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Hessian: Higher-order Gradients

@ Hessian
ec oL ok
01% 817131‘2 6I131‘n
L 2L ... 9L
H= Ox20T1 az% 0x20Tn
oL o o
0rn,0x1  Oxndzo Ox2

o Note: Again, we never explicitly construct the Hessian. It's usually
simpler and more efficient to compute the Vector Hessian Product
(VHP) directly.

@ Note: You will need to practice this in HW1.
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Vector Form

Full backpropagation algorithm (vector form):
Let vq,...,vy be a topological ordering of the computation graph
(i.e. parents come before children.)
vy denotes the variable we're trying to compute derivatives of (e.g. loss).
It's a scalar, which we can treat as a 1-D vector.

Fori=1,...,N

forward pass .
Compute v; as a function of Pa(v;)

vy =1

backward pass Fori=N-—1,...,1

. av, |
. — il B .
1 Vi = Zje(!h(vi) ov. Vi
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Vector Form

MLP example in vectorized form:

W(ii Wij) 1‘\‘ Backward pass:
X—7—h—Y—L f=l
y=~L(y-t)
b b® W@ =yh'
Forward pass: b2 — v
z=WWx + b h=wW®Ty
h=o0(z) Z=hoo'(2)
y = WO®h 4+ p® WO = zx"
1 - =
£=le—yl? b =7
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Computational Cost

@ Computational cost of forward pass: one add-multiply operation per
weight
1 1
Z,':ZWU(- )Xj-i-bl( )
J

@ Computational cost of backward pass: two add-multiply operations
per weight

x

@ Rule of thumb: the backward pass is about as expensive as two
forward passes.

@ For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.
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-
Closing Thoughts

@ Backprop is used to train the overwhelming majority of neural nets today.

o Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

@ Despite its practical success, backprop is believed to be neurally implausible.

e No evidence for biological signals analogous to error derivatives.

o All the biologically plausible alternatives we know about learn much
more slowly (on computers).

e So how on earth does the brain learn?
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-
Closing Thoughts

The psychological profiling [of a programmer] is mostly the ability to shift
levels of abstraction, from low level to high level. To see something in the
small and to see something in the large.

— Don Knuth
@ By now, we've seen three different ways of looking at gradients:

o Geometric: visualization of gradient in weight space
e Algebraic: mechanics of computing the derivatives
e Implementational: efficient implementation on the computer

@ When thinking about neural nets, it's important to be able to shift
between these different perspectives!
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