CSC413/2516 Winter 2021 with Prof. Jimmy Ba and Bo Wang Programming Assignment 4

Programming Assignment 4: DCGAN, StyleGAN, and DQN

Version: 1.0
Version Release Date: 2021-03-19
Due Date: Thursday, April 1st, at 11:59pm

Submission: You must submit 4 files through MarkUsF_-]: a PDF file containing your writeup, titled
a4-writeup.pdf, and your code files a4-dcgan.ipynb, a4-stylegan.ipynb, a4-dqgn.ipynb. Your
writeup must be typed.

The programming assignments are individual work. See the Course Information handoutﬂ for de-
tailed policies.

You should attempt all questions for this assignment. Most of them can be answered at least par-
tially even if you were unable to finish earlier questions. If you think your computational results
are incorrect, please say so; that may help you get partial credit.

The teaching assistants for this assignment are Bolin Gao and Rex Ma. Send your email with
subject “[CSC413] PA ...” to [csc413-2021-01-tas@cs.toronto.edu or post on Piazza with the tag
paé.

"https://markus.teach.cs.toronto.edu/csc413-2021-01
Zhttps://csc413-uoft.github.io/2021/assets/misc/syllabus.pdf

mailto:csc413-2021-01-tas@cs.toronto.edu
https://markus.teach.cs.toronto.edu/csc413-2021-01
https://csc413-uoft.github.io/2021/assets/misc/syllabus.pdf

(CSC413/2516 Winter 2021 with Prof. Jimmy Ba and Bo Wang Programming Assignment 4

Introduction

In this assignment, you’ll get hands-on experience coding and training GANs, as well as DQN
(Deep Q-learning Network), one of Reinforcement Learning methods. This assignment is divided
into three parts: in the first part, we will implement a specific type of GAN designed to process
images, called a Deep Convolutional GAN (DCGAN). We'll train the DCGAN to generate emojis
from samples of random noise. In the second part, you will get to play with a state-of-the-art GAN
called StyleGAN2-Ada. In the third part, we will implement and train a DQN agent to learn how
to play the CartPole balancing game. It will be fun to see your model performs much better than
you on the simple game :).

Part 1: Deep Convolutional GAN (DCGAN) [4pt]

For the first part of this assignment, we will implement a Deep Convolutional GAN (DCGAN).
A DCGAN is simply a GAN that uses a convolutional neural network as the discriminator, and
a network composed of transposed convolutions as the generator. To implement the DCGAN, we
need to specify three things: 1) the generator, 2) the discriminator, and 3) the training procedure.
We will go over each of these three components in the following subsections.

Open [DCGAN notebook link| on Colab and answer the following questions.

DCGAN

The discriminator in this DCGAN is a convolutional neural network that has the following archi-
tecture:

The DCDiscriminator class is implemented for you. We strongly recommend you to carefully
read the code, in particular the __init__ method. The three stages of the generator architec-
tures are implemented using conv and upconv functions respectively, all of which provided in

Helper Modules.

Discriminator

BatchNorm & RelLU BatchNorm & RelLU BatchNorm & RelLU
32
16 8 4 1
|— |— |
1
8 4 1
16 - 64 128
32
conv1 conv2 conv3 conv4

3

Generator

Now, we will implement the generator of the DCGAN, which consists of a sequence of transpose
convolutional layers that progressively upsample the input noise sample to generate a fake image.
The generator has the following architecture:

https://colab.research.google.com/github/csc413-uoft/2021/blob/master/assets/assignments/a4-dcgan.ipynb

(CSC413/2516 Winter 2021 with Prof. Jimmy Ba and Bo Wang Programming Assignment 4

1 4 8 16
i_’ —)
1 4
8
100 128 64 16
32

Generator

BatchNorm & RelLU BatchNorm & RelLU BatchNorm & RelLU

Linear & upconvi1 upconv2 upconv3

32
32
reshape 3

1. [1pt] Implementation: Implement this architecture by filling in the __init__ method of

the DCGenerator class, shown below. Note that the forward pass of DCGenerator is already
provided for you.

(Hint: You may find the provided DCDiscriminator useful.)

Note: The original DCGAN generator uses deconv function to expand the spatial dimension.
Odena et al.| later found the deconv creates checker board artifacts in the generated samples.
In this assignment, we will use upconv that consists of an upsampling layer followed by conv2D
to replace the deconv module (analogous to the conv function used for the discriminator
above) in your generator implementation.

Training Loop

Next, you will implement the training loop for the DCGAN. A DCGAN is simply a GAN with a
specific type of generator and discriminator; thus, we train it in exactly the same way as a standard
GAN. The pseudo-code for the training procedure is shown below. The actual implementation is
simpler than it may seem from the pseudo-code: this will give you practice in translating math to

code.

Algorithm 1 GAN Training Loop Pseudocode

1:
2
3:
4
5

10:

procedure TRAINGAN

Draw m training examples {z(1),... (™} from the data distribution pgasa
Draw m noise samples {z(l), . ,z(m)} from the noise distribution p,
Generate fake images from the noise: G(z(V) for i € {1,....m}

Compute the (least-squares) discriminator loss:

m

D) _ % 3 [(D(xu)) - 1)2} 4 % > [(p(c:(zu)))ﬂ

i=1 =1

Update the parameters of the discriminator

Draw m new noise samples {z(1), ... 2(™} from the noise distribution p,
Generate fake images from the noise: G(z()) for i € {1,....m}

Compute the (least-squares) generator loss:

7O — Tlni [(D(G(z(i))) - 1)1
=1

Update the parameters of the generator

https://distill.pub/2016/deconv-checkerboard/

CSC413/2516 Winter 2021 with Prof. Jimmy Ba and Bo Wang Programming Assignment 4

1. [1pt] Implementation: Fill in the gan_training_loop function in the GAN section of the
notebook.

There are 5 numbered bullets in the code to fill in for the discriminator and 3 bullets for the
generator. Each of these can be done in a single line of code, although you will not lose marks
for using multiple lines.

Note that in the discriminator update, we have provided you with the implementation of gradi-
ent penalty. Gradient penalty adds a term in the discriminator loss, and it is another popular
technique for stabilizing GAN training. Gradient penalty can take different forms, and it is
an active research area to study its effect on GAN training [Gulrajani et al., [2017] [Kodali
et al.l 2017] [Mescheder et al., 2018].

Experiment

1. [1pt] We will train a DCGAN to generate Windows (or Apple) emojis in the Training - GAN
section of the notebook. By default, the script runs for 20000 iterations, and should take
approximately half an hour on Colab. The script saves the output of the generator for a fixed
noise sample every 200 iterations throughout training; this allows you to see how the generator
improves over time. How does the generator performance evolve over time? Include in
your write-up some representative samples (e.g. one early in the training, one
with satisfactory image quality, and one towards the end of training, and give
the iteration number for those samples. Briefly comment on the quality of the
samples.

2. [1pt] Multiple techniques can be used to stabilize GAN training. We have provided code for
gradient_penalty [Thanh-Tung et al., 2019].

Try turn on the gradient_penalty flag in the args_dict and train the model again. Are
you able to stabilize the training? Briefly explain why the gradient penalty can help. You
are welcome to check out the related literature above for gradient penalty.

(Hint: Consider relationship between the Jacobian norm and its singular values.)

3. [Opt] Playing with some other hyperparameters such as spectral_norm. You can also try
lowering 1r (learning rate), and increasing d_train_iters (number of discriminator updates
per generator update). Are you able to stabilize the training? Can you explain why the above
measures help?

(CSC413/2516 Winter 2021 with Prof. Jimmy Ba and Bo Wang Programming Assignment 4

Part 2: StyleGAN2-Ada [4pt]

For this part of the assignment, you will get to to play with a state-of-the-art GAN called StyleGAN2-
Ada (Karras et al.| [2020a]). Several samples from the authors’ paper are shown in

Figure 1: Images sampled from the StyleGAN2-Ada Generator. From Left: “METFACES”,
Dog/Cat/Wild Animal, CIFAR10. Karras et al. [2020a]

To understand how StyleGAN2-Ada works, let’s first review the basics of StyleGAN
2o19)).

StyleGAN: A StyleGAN differentiates itself from a regular GAN in that its generator has been
heavily modified for generating images with multiple layers of details, such as hair strand, freckles
(fine detail), eye open/closed, hairstyle (mid detail) and pose, glasses, face shape (coarse detail).
This amazing level of control is achieved through the architecture shown in

Latent z € Z . is
aten Synthesis network g Noise
| Normalize Const 4x4x512

Mapping
network [
L

FC

Style block

Figure 2: Generator Architecture for StyleGAN and StyleGAN2. Left: StyleGAN, Center: Style-
GAN2, Right: Ezpanded View of Demodulation operation. From |Karras et al. [2019, 20200/

In (1eft), StyleGAN first passes a latent code z € Z = R5'2 into a so-called intermediate
latent variable w € W = R3'2, Next, w is fed through multiple blocks which modifies the image
at different resolutions (from 42 (coarse) to 10242 (fine)) within a so-called Synthesis Network,
starting from a constant 4 x 4 x 512 tensor. The output of each block is progressively up-sampled
into higher resolution, an idea from [Karras et al. [2017], which greatly helps with learning and
allows for the fine, medium and coarse details of an image to be controlled in a localized fashion.

CSC413/2516 Winter 2021 with Prof. Jimmy Ba and Bo Wang Programming Assignment 4

Some other techniques used to improve the quality of the image includes the usage of a WGAN-
GP objective (Arjovsky et al. |[2017]), adaptive instance normalization (AdaIN) and a modified
truncation trick (Brock et al.| [2018]) that works in W. The truncation trick essentially shrinks the
latent distribution to avoid sampling from regions where the generator was not trained on, thus
forming a trade-off between image quality and variety.

StyleGAN2: One major problem that StyleGAN had is that it generates several undesirable
distortions such as an water-droplet like “blob artifact”, which was found to be caused by the
AdalN operation and the progressive up-sampling architecture. StyleGAN2 addresses this problem
by replacing the AdalIN operation with a so-called demodulation operation (middle, right),
which removes the said artifact. Another crucial modification is the replacement of the progressive
up-sampling architecture with skip connections, which allows for the same level of control but
without artifacts.

StyleGAN2-Ada: Training a StyleGAN is expensive. It can take up to 41 days on a single
Tesla V100 GPU using on a dataset with O(10°) — O(10°) high-quality examples. Training on
smaller dataset on the other hand will lead to overfitting of the discriminator. The usual data
augmentation will lead to undesirable distortions. StyleGAN2-Ada mitigates these issues through
a so-called adaptive discriminator augmentation, which allows it to be trained on a few thousand
images while preserving the same quality of the images as generated by StyleGAN2.

In the following experiments, we generate images and manipulate these images with a pre-
trained StyleGAN2-Ada generator. Since StyleGAN2-Ada is written in Tensorflow, therefore we
will have to run in a Tensorflow environment. Don’t worry, you do not need to write any TensorFlow
code.

Experiments

Open the Colab notebook link to begin: [StyleGAN notebook link].

1. [1pt] Sampling and Identifying Fakes To begin, unlock one of the pre-trained generators
(which ever you prefer). Complete generate_latent_code and generate_images functions to gen-
erate a small row of 3—5 images. This is done by following the instructions in the notebook as
well as StyleGAN'’s official documentation https://github.com/NVlabs/stylegan starting
from “There are three ways to use the pre-trained generator....”. If you wish, you can try to use
https://www.whichfaceisreal.com/learn.html as a guideline to spot any imperfections
that you detect in these images. Do not include these images in your submission.

2. [1pt] Interpolation
Complete the interpolate_images function using linear interpolation between two latent
codes z1, zo sampled from your generate_latent_code function created previously,

z=rz1+ (1 —7r)ze,r €]0,1] (1)

and feed this interpolation through the StyleGAN2-Ada generator Gs. Include a small row
of interpolation in your PDF submission.

3. [2pt] Style Mixing and Fine Control

In the final part, you will reproduce the famous style mixing example from the original
StyleGAN paper There are two main steps:

https://colab.research.google.com/github/csc413-uoft/2021/blob/master/assets/assignments/a4-stylegan.ipynb
https://github.com/NVlabs/stylegan
https://www.whichfaceisreal.com/learn.html

(CSC413/2516 Winter 2021 with Prof. Jimmy Ba and Bo Wang Programming Assignment 4

Step 1:

Step 2:

o
]
]
=
2
£
4

=

k1
4
]

Figure 3: Style Mixing figure from Karras et al.

Follow the StyleGAN documentation https://github.com/NVlabs/stylegan starting
from Look up Gs.components.mapping and Gs.components.synthesis to access individual
sub-networks of the generator... and the instructions in the notebook to complete gener-
ate_from_subnetwork. Note: before putting src_dlatents into Gs.components.synthesis.run()
we will need to perform the truncation trick as described from the StyleGAN paper
(which you were using it implicitly in the previous parts), which involves the following:

(a) sample an average latent vector Wqpg Using Gs.get_var (see documentation https:
//github.com/NVlabs/stylegan)

(b) set src_dlatents as,
src_dlatents = wgyg + (src_dlatents — wgyg) X 9 (2)

where ¢ € [—1,1] is your truncation constant and src_dlatents on the right-hand side
is the output from Gs.components.mapping.run.

For more details on how this works, see Appendix B of Karras et al.| [2019] or Brock
[2018], where it was first introduced. Sample a few images to ensure that your
function works. Do not include these images in your submission.

Copy the code you used to generate images from sub-network into the indicated location
in the final cell of the notebook. Initialize the col_seeds, row_seeds and col_styles and
generate a grid of image. Run the final cell to generate a grid of images. Now, experiment
with the col_styles variable. In a few sentences, Explain what col_styles does, for
instance, roughly describe what these numbers corresponds to. Create a
simple experiment to backup your argument. Include at maximum two sets
of images that illustrates the effect of changing col_styles along with your
explanation. Include them as screenshots to minimize the size of your submission.
Make reference to the StyleGAN papers by [Karras et al| [2019} 2020ab] if you wish.
(Hint: coarse versus fine details.)

https://github.com/NVlabs/stylegan
https://github.com/NVlabs/stylegan
https://github.com/NVlabs/stylegan

CSC413/2516 Winter 2021 with Prof. Jimmy Ba and Bo Wang Programming Assignment 4

Part 3: Deep Q-Learning Network (DQN) [4pt]

In this part of the assignment, we will apply Reinforcement Learning (DQN) to tackle the CartPole
Balancing game, the game that seems easy but actually quite hard. If you haven’t tried it yet, 1
recommend you try it first [the link|. However, the difficult game for human may be very simple
to a computer.

Figure 4: Image of the CartPole Balancing game from OpenAI Gym|Brockman et al. [2016]

DQN Overview

Reinforcement learning defines an environment for the agent to perform certain actions (according
to the policy) that maximize the reward at every time stamp. Essentially, our aim is to train a
agent that tries to maximize the discounted, cumulative reward Ry, = > 2, 7'~*r;. Because we
assume there can be infinite time stamps, the discount factor, -, is a constant between 0 and 1 that
ensures the sum converges. It makes rewards from the uncertain far future less important for our
agent than the ones in the near future.

The idea of Q-learning is that if we have a function Q*(state, action) that outputs the maximum
expected cumulative reward achievable from a given state-action pair, we could easily construct a
policy (action selection rule) that maximizes the reward:

7w (s) = argmax Q*(s,a) (3)

However, we don’t know everything about the world, so we don’t have access to @*. But,
since neural networks are universal function approximators, we can simply create one and train it
to resemble QQ*. For our training update rule, we will use a fact that every ¢ function for some
policies obeys the Bellman equation:

Q"(s,a) =7 +7Q"(s',7(s")) (4)

https://jeffjar.me/cartpole.html

CSC413/2516 Winter 2021 with Prof. Jimmy Ba and Bo Wang Programming Assignment 4

An intuitive explanation of the structure of the Bellman equation is as follows. Suppose that
the agent has received reward r; at the current state, then the maximum discounted reward from
this point onward is equal to the current reward plus the maximum expected discounted reward
YQ* (St+1, at+1) from the next stage onward. The difference between the two sides of the equality
is known as the temporal difference error, é:

5= Qls,0) = (r +ymaxQ(s',a))

Our goal is the minimise this error, so that we can have a good @ function to estimate the
rewards given any state-action pair.

Experiments

Open the Colab notebook link to begin: [DQN notebook link|. Read through the notebook and
play around with it. More detailed instructions are given in the notebook. Have fun!

1. [1pt] Implementation of ¢ — greedy

Complete the function get_action for the agent to select an action based on current state. We
want to balance exploitation and exploration through ¢ — greedy, which is explained in the
notebook.

2. [2pt] Implementation of DQN training step

Complete the function train for the model to perform a single step of optimization. This is
basically to construct the the temporal difference error § and perform a standard optimizer
update. Notice that there are two networks in the DQN _network, policy_net and target_net,
think about how to use these two networks to construct the loss.

3. [Ipt] Train your DQN Agent

After implementing the required functions, now you can train your DQN Agent, and you
are suggested to tune the hyperparameters listed in the notebook. Hyperparameters are
important to train a good agent.

After all of these, now you can validate your model by playing the CartPole Balance game!

https://colab.research.google.com/github/csc413-uoft/2021/blob/master/assets/assignments/a4-dqn.ipynb

CSC413/2516 Winter 2021 with Prof. Jimmy Ba and Bo Wang Programming Assignment 4

What you need to submit

e Your code files: ad-dcgan.ipynb, a4d-stylegan.ipynb, ad-dgn.ipynb.

e A PDF document titled ad-writeup.pdf containing code screenshots, any experiment
results or visualizations, as well as your answers to the written questions.

Further Resources
For further reading on GANs, DCGAN, StyleGAN and DQN, the following links may be useful:
1. Generative Adversarial Nets (Goodfellow et al., 2014)
2. Deconvolution and Checkerboard Artifacts (Odena et al., 2016)
3. Progressive Growing of GANs (Karras et al. [2017]
4. Analyzing and Improving the Image Quality of StyleGAN (Karras et al.[[2020b])
5. [An Introduction to GANs in Tensorflow
6. Generative Models Blog Post from OpenAl
7. Playing Atari with Deep Reinforcement Learning (Mnih et al., 2013)

8. Deep Reinforcement Learning: A Brief Survey (Arulkumaran et al., 2017)

References

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pages 214-223. PMLR, 2017.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans. In Advances in neural information processing systems,
pages 5767-5777, 2017.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4401-4410, 2019.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Train-
ing generative adversarial networks with limited data. arXiv preprint arXiv:2006.06676, 2020a.

10

https://arxiv.org/pdf/1406.2661.pdf
https://distill.pub/2016/deconv-checkerboard/
https://arxiv.org/pdf/1710.10196.pdf
https://arxiv.org/abs/1912.04958
http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/
https://blog.openai.com/generative-models/
https://arxiv.org/abs/1312.5602
https://ieeexplore.ieee.org/document/8103164

CSC413/2516 Winter 2021 with Prof. Jimmy Ba and Bo Wang Programming Assignment 4

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Ana-
lyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8110-8119, 2020b.

Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. On convergence and stability of
gans. arXiw preprint arXiw:1705.07215, 2017.

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do
actually converge? arXiv preprint arXiv:1801.04406, 2018.

Hoang Thanh-Tung, Truyen Tran, and Svetha Venkatesh. Improving generalization and stability
of generative adversarial networks. arXiv preprint arXiv:1902.03984, 2019.

11

