
CSC413/2516 Winter 2021 with Professor Jimmy Ba & Bo Wang Programming Assignment 3

Programming Assignment 3: Attention-Based Neural Machine Trans-
lation

Due Date: Sat, Mar. 20th, at 11:59pm

Submission: You must submit 3 files through MarkUs1: a PDF file containing your writeup, titled
a3-writeup.pdf, and your code files nmt.ipynb and bert and gpt.ipynb. Your writeup must be
typed.

The programming assignments are individual work. See the Course Information handout2 for de-
tailed policies.

You should attempt all questions for this assignment. Most of them can be answered at least par-
tially even if you were unable to finish earlier questions. If you think your computational results
are incorrect, please say so; that may help you get partial credit.

Errata:

• Part 1 Q3, Part 2 Q4: Question has been rewritten to reduce ambiguity.

• Part 1: Previously, the handout specified using a 10 dimensional embedding. Instead, you
should use an embedding dimension equal to the RNN encoder hidden dimension. This
requires no changes to the code notebook.

1https://markus.teach.cs.toronto.edu/csc413-2021-01
2https://csc413-uoft.github.io/2021/assets/misc/syllabus.pdf

1

https://markus.teach.cs.toronto.edu/csc413-2021-01
https://csc413-uoft.github.io/2021/assets/misc/syllabus.pdf

CSC413/2516 Winter 2021 with Professor Jimmy Ba & Bo Wang Programming Assignment 3

Introduction

In this assignment, you will train a few attention-based neural machine translation models to
translate words from English to Pig-Latin. Along the way, you’ll gain experience with several
important concepts in NMT, including long short-term memory architectures and attention.

Pig Latin

Pig Latin is a simple transformation of English based on the following rules (applied on a per-word
basis):

1. If the first letter of a word is a consonant, then the letter is moved to the end of the word,
and the letters “ay” are added to the end: team → eamtay.

2. If the first letter is a vowel, then the word is left unchanged and the letters “way” are added
to the end: impress → impressway.

3. In addition, some consonant pairs, such as “sh”, are treated as a block and are moved to the
end of the string together: shopping → oppingshay.

To translate a whole sentence from English to Pig-Latin, we simply apply these rules to each word
independently:

i went shopping→ iway entway oppingshay

Goal: We would like a neural machine translation model to learn the rules of Pig-Latin im-
plicitly, from (English, Pig-Latin) word pairs. Since the translation to Pig Latin involves moving
characters around in a string, we will use character-level recurrent neural networks for our model.

Because English and Pig-Latin are so similar in structure, the translation task is almost a copy
task; the model must remember each character in the input, and recall the characters in a specific
order to produce the output. This makes it an ideal task for understanding the capacity of NMT
models.

Setting Up

We recommend that you use Colab(https://colab.research.google.com/) for the assignment,
as all the assignment notebooks have been tested on Colab. From the assignment zip file, you
will find one python notebook file: nmt.ipynb. To setup the Colab environment, just upload this
notebook file using the upload tab at https://colab.research.google.com/.

2

https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/

CSC413/2516 Winter 2021 with Professor Jimmy Ba & Bo Wang Programming Assignment 3

Data

The data for this task consists of pairs of words {(s(i), t(i))}Ni=1 where the source s(i) is an English
word, and the target t(i) is its translation in Pig-Latin.

In this assignment, you will investigate the effect of dataset size on generalization ability. We
provide a small and large dataset. The small dataset is composed of a subset of the unique words
from the book “Sense and Sensibility,” by Jane Austen. The vocabulary consists of 29 tokens:
the 26 standard alphabet letters (all lowercase), the dash symbol -, and two special tokens <SOS>

and <EOS> that denote the start and end of a sequence, respectively. 3 The dataset contains 3198
unique (English, Pig-Latin) pairs in total; the first few examples are:

{ (the, ethay), (family, amilyfay), (of, ofway), ... }

The second, larger dataset is obtained from Peter Norvig’s natural langauge corpus4. It contains
the top 20,000 most used English words, which is combined with the previous data set to obtain
22,402 unique words. This dataset contains the same vocabulary as the previous dataset.

In order to simplify the processing of mini-batches of words, the word pairs are grouped based
on the lengths of the source and target. Thus, in each mini-batch the source words are all the same
length, and the target words are all the same length. This simplifies the code, as we don’t have to
worry about batches of variable-length sequences.

Outline of Assignment

Throughout the rest of the assignment, you will implement some attention-based neural machine
translation models, and finally train the models and examine the results. You will first implement
three main building blocks: Long Short-Term Memory (LSTM), Additive attention and Scaled
dot-product attention. Using these building blocks, you will implement two encoders (RNN and
transformer encoders) and three decoders (RNN, RNN+additive attention and transformer de-
coders). Using these, you will train three final models:

• Part 1: (RNN encoder) + (RNN decoder)

• Part 2: (RNN encoder) + (RNN decoder with additive attention)

• Part 3: (Transformer encoder) + (Transformer decoder)

• Part 4: Fine-tuning pretrained transformers

3Note that for the English-to-Pig-Latin task, the input and output sequences share the same vocabulary; this is
not always the case for other translation tasks (i.e., between languages that use different alphabets).

4https://norvig.com/ngrams/

3

CSC413/2516 Winter 2021 with Professor Jimmy Ba & Bo Wang Programming Assignment 3

Deliverables

Each section is followed by a checklist of deliverables to add in the assignment writeup. To also give
a better sense of our expectations for the answers to the conceptual questions, we’ve put maximum
sentence limits. You will not be graded for any additional sentences.

4

CSC413/2516 Winter 2021 with Professor Jimmy Ba & Bo Wang Programming Assignment 3

Part 1: Long Short-Term Memory (LSTM) [2pt]

Translation is a sequence-to-sequence problem: in our case, both the input and output are sequences
of characters. A common architecture used for seq-to-seq problems is the encoder-decoder model [4],
composed of two RNNs, as follows:

c a t <EOS> <SOS> a t c a y

a t c a y <EOS>

Encoder Decoder

Training

Figure 1: Training the NMT encoder-decoder architecture.

c a t <EOS> <SOS>

a t c a y <EOS>

Encoder Decoder

Generation

Figure 2: Generating text with the NMT encoder-decoder architecture.

The encoder RNN compresses the input sequence into a fixed-length vector, represented by
the final hidden state hT . The decoder RNN conditions on this vector to produce the translation,
character by character.

Input characters are passed through an embedding layer before they are fed into the encoder
RNN. Where H is the dimension of the encoder RNN hidden state, we learn a 29×H embedding
matrix, where each of the 29 characters in the vocabulary is assigned a H-dimensional embedding.
At each time step, the decoder RNN outputs a vector of unnormalized log probabilities given by a
linear transformation of the decoder hidden state. When these probabilities are normalized, they
define a distribution over the vocabulary, indicating the most probable characters for that time step.
The model is trained via a cross-entropy loss between the decoder distribution and ground-truth
at each time step.

5

CSC413/2516 Winter 2021 with Professor Jimmy Ba & Bo Wang Programming Assignment 3

The decoder produces a distribution over the output vocabulary conditioned on the previous
hidden state and the output token in the previous timestep. A common practice used to train
NMT models is to feed in the ground-truth token from the previous time step to condition the
decoder output in the current step. This training procedure is known as “teacher-forcing” shown in
Figure 1. At test time, we don’t have access to the ground-truth output sequence, so the decoder
must condition its output on the token it generated in the previous time step, as shown in Figure 2.
Let’s begin with implementing common encoder models: the LSTM and the transformer encoder.

Open https://colab.research.google.com/github/csc413-uoft/2021/blob/master/assets/

assignments/nmt.ipynb on Colab and answer the following questions.

1. [0.5pt] The forward pass of a LSTM unit is defined by the following equations:

it = σ(Wiixt + bii +Whiht−1 + bhi) (1)

ft = σ(Wifxt + bif +Whfht−1 + bhf) (2)

gt = tanh(Wigxt + big +Whght−1 + bhg) (3)

ot = σ(Wioxt + bio +Whoht−1 + bho) (4)

ct = ft � ct−1 + it � gt (5)

ht = ot � tanh(ct) (6)

where � is the element-wise multiplication. Although PyTorch has a built in LSTM im-
plementation (nn.LSTMCell), we’ll implement our own LSTM cell from scratch, to better
understand how it works. Complete the __init__ and forward methods of the MyLSTMCell

class, to implement the above equations. A template has been provided for the forward

method.

Train the RNN encoder/decoder model on both datasets. We’ve provided implementations
for recurrent encoder/decoder models using the LSTM cell. (Make sure you have run all the
relevant previous cells to load the training and utility functions.)

At the end of each epoch, the script prints training and validation losses, and the Pig-Latin
translation of a fixed sentence, “the air conditioning is working”, so that you can see how the
model improves qualitatively over time. The script also saves several items:

• The best encoder and decoder model parameters, based on the validation loss.

• A plot of the training and validation losses.

After the models have been trained on both datasets, pig_latin_small and pig_latin_large,
run the save_loss_comparison_lstm method, which compares the loss curves of the two
models. Answer the following two questions in less than 3 sentences: Does either model
perform significantly better? Why might this be the case?

6

https://colab.research.google.com/github/csc413-uoft/2021/blob/master/assets/assignments/nmt.ipynb
https://colab.research.google.com/github/csc413-uoft/2021/blob/master/assets/assignments/nmt.ipynb
https://colab.research.google.com/github/csc413-uoft/2021/blob/master/assets/assignments/nmt.ipynb
https://colab.research.google.com/github/csc413-uoft/2021/blob/master/assets/assignments/nmt.ipynb

CSC413/2516 Winter 2021 with Professor Jimmy Ba & Bo Wang Programming Assignment 3

2. [0.5pt] After the training is complete, pick the best model and use it to translate test sentences
using the translate_sentence function. Try a few of your own words by changing the
variable TEST_SENTENCE. Identify a distinct failure mode and briefly describe it.

3. [1pt] Consider an LSTM encoder with an H dimensional hidden state, and an input sequence
with V vocabulary size, D embedding features size, and K length. Write down the number
of LSTM units and number of connections in this encoder model as a function of H, K, and
D. For simplicity, you may ignore the bias units. You may also assume the input sequence
has already been embedded, and ignore the embedding layer in your calculations.

Deliverables

Create a section in your report called LSTMs. Add the following in this section:

• A screenshot of your full MyLSTMCell implementation, the loss plots output by
save_loss_comparison_lstm, and your analysis. [0.5pt]

• Your answer for the question in step 2. Make sure to include the input-output pair for the
failure case you identify. Your answer should not exceed three sentences in total (excluding
the failure cases you’ve identified.) [0.5pt]

• Your answer for question 3. [1pts]

7

CSC413/2516 Winter 2021 with Professor Jimmy Ba & Bo Wang Programming Assignment 3

Part 2: Additive Attention [2pt]

Attention allows a model to look back over the input sequence, and focus on relevant input tokens
when producing the corresponding output tokens. For our simple task, attention can help the
model remember tokens from the input, e.g., focusing on the input letter c to produce the output
letter c.

The hidden states produced by the encoder while reading the input sequence, henc1 , . . . , hencT can
be viewed as annotations of the input; each encoder hidden state henci captures information about
the ith input token, along with some contextual information. At each time step, an attention-based
decoder computes a weighting over the annotations, where the weight given to each one indicates
its relevance in determining the current output token.

In particular, at time step t, the decoder computes an attention weight α
(t)
i for each of the

encoder hidden states henci . The attention weights are defined such that 0 ≤ α(t)
i ≤ 1 and

∑
i α

(t)
i =

1. α
(t)
i is a function of an encoder hidden state and the previous decoder hidden state, f(hdect−1, h

enc
i),

where i ranges over the length of the input sequence.
There are a few engineering choices for the possible function f . In this assignment, we will

investigate two different attention models: 1) the additive attention using a two-layer MLP and 2)
the scaled dot product attention, which measures the similarity between the two hidden states.

To unify the interface across different attention modules, we consider attention as a function
whose inputs are triple (queries, keys, values), denoted as (Q,K, V).

In the additive attention, we will learn the function f , parameterized as a two-layer fully-

connected network with a ReLU activation. This network produces unnormalized weights α̃
(t)
i that

are used to compute the final context vector.

...

+
Decoder Hidden States Encoder Hidden States

batch_size

batch_size

seq_len

hidden_sizehidden_size

batch_size

seq_len

1

Attention Weights

Figure 3: Dimensions of the inputs, Decoder Hidden States (query), Encoder Hidden States
(keys/values) and the attention weights (α(t)).

8

CSC413/2516 Winter 2021 with Professor Jimmy Ba & Bo Wang Programming Assignment 3

For the forward pass, we are given a batch of query of the current time step, which has
dimension batch_size x hidden_size, and a batch of keys and values for each time step of the
input sequence, both have dimension batch_size x seq_len x hidden_size. The goal is to
obtain the context vector. We first compute the function f(Qt,K) for each query in the batch and
all corresponding keys Ki, where i ranges over seq_len different values. Since f(Qt,Ki) is a scalar,
the resulting tensor of attention weights has dimension batch_size x seq_len x 1. Some of the
important tensor dimensions in the AdditiveAttention module are visualized in Figure 3. The
AdditiveAttention module returns both the context vector batch_size x 1 x hidden_size and
the attention weights batch_size x seq_len x 1.

1. [1pt] Read how the provided forward methods of the AdditiveAttention class computes

α̃
(t)
i , α

(t)
i , ct. Write down the mathematical expression for these quantity as a function of

W1,W2, b1, b2, Qt,Ki.

(Hint: Take a look at the equations in Part 4.1 for the scaled dot product attention model.)

α̃
(t)
i = f(Qt,Ki) =

α
(t)
i =

ct =

Here, α̃
(t)
i is the unnormalized attention weights; α

(t)
i is the attention weights in between 0

and 1; ct is the final context vector.

2. [0pt] The notebook provides all required code to run the additive attention model. Run the
notebook to train a language model that has additive attention in its decoder. Find one
training example where the decoder with attention performs better than the decoder without
attention. Show the input/outputs of the model with attention, and the model without
attention that you’ve trained in the previous section.

3. [0pt] How does the training speed compare? Why?

4. [1pt] Given an input sequence of length K and D embedding features size, assume the
RNNAttentionDecoder uses this input to generate an output sequence of length K, which
has V vocabulary size. Write down the number of LSTM units in RNNAttentionDecoder and
the number of connections in the above computation, as a function of hidden state size H, V ,
D, and K. Assume the attention network is parameterized as in AdditiveAttention. For
simplicity, you may ignore the bias units. You may also ignore the embedding process in your
computations. However, do include the connections associated with the output layer.

9

CSC413/2516 Winter 2021 with Professor Jimmy Ba & Bo Wang Programming Assignment 3

Deliverables

Create a section called Additive Attention. Add the following in this section:

• Three equations for question 1. [1pt]

• Training/validation plots you’ve obtained in this section. [0 pts]

• Answers to question 2. [0 pts]

• Answer to question 3. [0 pts]

• Answer to question 4. [1pt]

10

CSC413/2516 Winter 2021 with Professor Jimmy Ba & Bo Wang Programming Assignment 3

Part 3: Scaled Dot Product Attention [3pt]

1. [0.5pt] In lecture, we learnt about Scaled Dot-product Attention used in the transformer
models. The function f is a dot product between the linearly transformed query and keys
using weight matrices Wq and Wk:

α̃
(t)
i = f(Qt,Ki) =

(WqQt)
T (WkKi)√
d

,

α
(t)
i = softmax(α̃(t))i,

ct =
T∑
i=1

α
(t)
i WvVi,

where, d is the dimension of the query and the Wv denotes weight matrix project the value
to produce the final context vectors.

Implement the scaled dot-product attention mechanism. Fill in the forward meth-
ods of the ScaledDotAttention class. Use the PyTorch torch.bmm (or @) to compute the
dot product between the batched queries and the batched keys in the forward pass of the
ScaledDotAttention class for the unnormalized attention weights.

The following functions are useful in implementing models like this. You might find it useful
to get familiar with how they work. (click to jump to the PyTorch documentation):

• squeeze

• unsqueeze

• expand as

• cat

• view

• bmm (or @)

Your forward pass needs to work with both 2D query tensor (batch_size x (1) x hidden_size)
and 3D query tensor (batch_size x k x hidden_size).

2. [0.5pt] Implement the causal scaled dot-product attention mechanism. Fill in the
forward method in the CausalScaledDotAttention class. It will be mostly the same as
the ScaledDotAttention class. The additional computation is to mask out the attention
to the future time steps. You will need to add self.neg_inf to some of the entries in the
unnormalized attention weights. You may find torch.tril handy for this part.

11

https://pytorch.org/docs/stable/torch.html#torch.bmm
http://pytorch.org/docs/0.3.0/torch.html#torch.squeeze
http://pytorch.org/docs/0.3.0/torch.html#torch.unsqueeze
http://pytorch.org/docs/0.3.0/tensors.html?highlight=expand_as#torch.Tensor.expand_as
http://pytorch.org/docs/0.3.0/torch.html?highlight=cat#torch.cat
http://pytorch.org/docs/0.3.0/tensors.html?highlight=view#torch.Tensor.view
http://pytorch.org/docs/0.3.0/tensors.html?highlight=bmm#torch.bmm
https://pytorch.org/docs/stable/torch.html#torch.tril

CSC413/2516 Winter 2021 with Professor Jimmy Ba & Bo Wang Programming Assignment 3

Figure 4: The transformer architecture. [5]

12

CSC413/2516 Winter 2021 with Professor Jimmy Ba & Bo Wang Programming Assignment 3

3. [0.5pt] We will now use ScaledDotAttention as the building blocks for a simplified trans-
former [5] encoder.

The encoder looks like the left half of Figure 4. The encoder consists of three components:

• Positional encoding: To encode the position of each word, we add to its embedding a
constant vector that depends on its position:

pth word embedding = input embedding + positional encoding(p)

We follow the same positional encoding methodology described in [5]. That is we use
sine and cosine functions:

PE(pos, 2i) = sin
pos

100002i/dmodel
(7)

PE(pos, 2i+ 1) = cos
pos

100002i/dmodel
(8)

Since we always use the same positional encodings throughout the training, we pre-
generate all those we’ll need while constructing this class (before training) and keep
reusing them throughout the training.

• A ScaledDotAttention operation.

• A following MLP.

For this question, describe why we need to represent the position of each word through this
positional encoding in one or two sentences. Additionally, describe the advantages of using
this positional encoding method, as opposed to other positional encoding methods such as a
one hot encoding in one or two sentences.

4. [0.5pt] The TransformerEncoder and TransformerDecoder modules have been completed
for you. Train the language model with transformer based encoder/decoder using the first
configuration (hidden size 32, small dataset). How do the translation results compare to the
previous decoders? Write a short, qualitative analysis.

5. [1pt] In the code notebook, we have provided an experimental setup to evaluate the perfor-
mance of the Transformer as a function of hidden size and data set size. Run the Transformer
model using hidden size 32 versus 64, and using the small versus large dataset (in total, 4
runs). We suggest using the provided hyper-parameters for this experiment.

Run these experiments, and report the effects of increasing model capacity via the hidden
size, and the effects of increasing dataset size. In particular, report your observations on how
loss as a function of gradient descent iterations is affected, and how changing model/dataset
size affects the generalization of the model. Are these results what you would expect?

13

CSC413/2516 Winter 2021 with Professor Jimmy Ba & Bo Wang Programming Assignment 3

In your report, include the two loss curves output by save_loss_comparison_by_hidden

and save_loss_comparison_by_dataset, the lowest attained validation loss for each run,
and your response to the above questions.

6. [0pt] The decoder includes the additional CausalScaledDotAttention component. Take a
look at Figure 4. The transformer solves the translation problem using layers of attention
modules. In each layer, we first apply the CausalScaledDotAttention self-attention to the
decoder inputs followed by ScaledDotAttention attention module to the encoder annota-
tions, similar to the attention decoder from the previous question. The output of the attention
layers are fed into an hidden layer using ReLU activation. The final output of the last trans-
former layer are passed to the self.out to compute the word prediction. To improve the
optimization, we add residual connections between the attention layers and ReLU layers.

Modify the transformer decoder __init__ to use non-causal attention for both self attention
and encoder attention. What do you observe when training this modified transformer? How
do the results compare with the causal model? Why?

7. [0pt] What are the advantages and disadvantages of using additive attention vs scaled dot-
product attention? List one advantage and one disadvantage for each method.

Deliverables

Create a section in your report called Scaled Dot Product Attention. Add the following:

• Screenshots of your ScaledDotProduct, CausalScaledDotProduct implementations. High-
light the lines you’ve added. [1pt]

• Your answer to question 3. [0.5pt]

• Your response to question 4. Your analysis should not exceed three sentences. [0.5pt]

• The two loss curves plots output by the experimental setup in question 5, and the lowest
validation loss for each run. [0.5pt]

• Your response to the written component of question 5. [0.5pt]

• Your response to question 6. Your response should not exceed three sentences. [0pt]

• Your response to question 7. [0pt]

14

CSC413/2516 Winter 2021 with Professor Jimmy Ba & Bo Wang Programming Assignment 3

Part 4: Fine-tuning for arithmetic sentiment analysis [2pt]

In this section, we will learn how to use pre-trained language models to determine whether an
verbal numerical expression is negative (label 0), zero (label 1), or positive (label 2). For example,
“eight minus ten” is negative so the output of our sentence classifier should output label index
0. We are going to use two transformer based models, GPT and BERT. We start by explaining
what the two models are and how we can add a classifier on top of either pretrained model to
perform sentiment analysis for verbal numerical expressions. Most code is given to you in the note-
book https://colab.research.google.com/github/csc413-uoft/2021/blob/master/assets/

assignments/bert_and_gpt.ipynb. Your task is to slightly modify the sentence classifier layer,
make plots, report performances, and think about inference examples to test the model. Please
carefully review the background for GPT and BERT before starting to answer the questions. The
Hugging Face transformers library, used in this tutorial, has more than 40k stars on github due to
its ease of use, and will be very useful for your research or projects in the future.

Figure 5: (left) Transformer architecture and training objectives used in GPT. (right) Input
transformations for fine-tuning on different tasks. Reproduced from GPT paper [3]

Background for GPT:

In traditional language modeling task, the objective is to maximize the log likelihood of predicting
the current word (or token) in the sentence, given the previous words (to the left of current work)

15

https://colab.research.google.com/github/csc413-uoft/2021/blob/master/assets/assignments/bert_and_gpt.ipynb
https://colab.research.google.com/github/csc413-uoft/2021/blob/master/assets/assignments/bert_and_gpt.ipynb

CSC413/2516 Winter 2021 with Professor Jimmy Ba & Bo Wang Programming Assignment 3

as context. This is called the “autoregressive model”. The GPT model [3] is an example of this
kind which is pretrained on BookCorpus [6], a large dataset of unlabeled sentences and can be later
fine-tuned on specific downstream tasks.

GPT use staked Transformer decoders [2] for its language modeling. It applies a multi-headed
self-attention operation over the input context tokens followed by position-wise feedforward layers
to produce an output distribution over target tokens. See figure 5 for the overall architecture. In
the pretraining stage, the training objective for predicting next token is used,

L(U) =
∑
i

logP (ui|ui−k, . . . , ui−1; Θ),

where U is the collection of text tokens, {u1, . . . , un}. GPT process the text sentence unidirec-
tionally by masking out the tokens at future positions (i.e. > i).

Background for BERT:

Bidirectional Encoder Representations from Transformers (BERT) [1], as the name suggests, is
a language model based on the Transformer [5] encoder architecture that has been pre-trained on
a large dataset of unlabeled sentences from Wikipedia and BookCorpus [6]. Given a sequence of
tokens representing sentence(s), BERT outputs a “contextualized representation” vector for each
of the token. Now, suppose we are given some down-stream tasks, such as sentence classification
or question-answering. We can take the BERT model, add a small layer on top of the BERT
representation(s), and then fine-tune the added parameters and BERT parameters on the down-
stream dataset, which is typically much smaller than the data used to pre-train BERT.

In contrast to a unidirectional autoregressive model, however, BERT predicts the current word
given both the words before and after (i.e. to the left and to the right) of the sentence–hence
“bidirectional”. To be able to attend from both directions, BERT uses the encoder Transformer,
which does not apply any attention masking unlike the decoder.

We briefly describe how BERT is pre-trained. BERT has 2 task objectives for pre-training: (1)
Masked Language Modeling (Masked LM), and (2) Next Sentence Prediction (NSP). The input to
the model is a sequence of tokens of the form:

[CLS] Sentence A [SEP] Sentence B,

where [CLS] (“class”) and [SEP] (“separator”) are special tokens. In Masked LM, some percentage
of the input tokens are converted into [MASK] tokens, and the objective is to use the final layer
representation for that masked token to predict the correct word that was masked out5. For
NSP, the task is to use the contextualized representation for the [CLS] token to perform binary
classification for whether sentence A and sentence B are consecutive sentences in the unlabeled
dataset. See Figure 6 for the conceptual picture of BERT pre-training and fine-tuning.

5The full training detail is slightly more complicated, but conceptually similar.

16

CSC413/2516 Winter 2021 with Professor Jimmy Ba & Bo Wang Programming Assignment 3

BERT BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Question Paragraph

Start/End Span

BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Masked Sentence A Masked Sentence B

Pre-training Fine-Tuning

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair

SQuAD

Question Answer Pair

NERMNLI

Figure 6: Overall pre-training and fine-tuning for BERT. Reproduced from BERT paper [1]

In this assignment, you will be fine-tuning BERT and GPT on a single sentence classi-
fication task (see below about the dataset).

Figure 7 illustrates the architecture for fine-tuning BERT on this task. We prepend the to-
kenized sentence with the [CLS] token, then feed the sequence into BERT. We then take the
contextualized [CLS] token representation at the last layer of BERT and add either a softmax
layer on top corresponding to the number of output classes in the task. Alternatively, we can have
fully connected hidden layers before the softmax layer for more expressivity for harder tasks. Then,
both the new layers and the entire BERT parameters are trained end to end on the task for a few
epochs.

Similarly to fine-tune GPT on this task. We feed the tokenized sentence to the model and take
the representation at the last transformer layer in GPT. We don’t append special [CLS] tokens here
in GPT, instead we take the representation at the position of last token in the sentence. Then we
add either a softmax layer or additional fully connected layers, as in fine-tuning BERT. Finally,
parameters in all layers are trained on the task for a few epochs.

17

CSC413/2516 Winter 2021 with Professor Jimmy Ba & Bo Wang Programming Assignment 3

%(57

(>&/6@ (� �(>6(3@��� (1 (�¶ ��� (0¶

& 7� 7>6(3@��� 71 7�¶ ��� 70¶

>&/6@
7RN�
� �>6(3@��� 7RN�

1
7RN�
� ��� 7RN

0

4XHVWLRQ 3DUDJUDSK

%(57

(>&/6@ (� �(�
�(1

& 7� �7� �71

6LQJOH�6HQWHQFH�

���

���

%(57

7RN�� �7RN�� �7RN�1���>&/6@

(>&/6@ (� �(�
�(1

& 7� �7� �71

6LQJOH�6HQWHQFH�

%�3(52 2

���

���(>&/6@ (� �(>6(3@

&ODVV�
/DEHO

��� (1 (�¶ ��� (0¶

& 7� 7>6(3@��� 71 7�¶ ��� 70¶

6WDUW�(QG�6SDQ

&ODVV�
/DEHO

%(57

7RN�� �7RN�� �7RN�1���>&/6@ 7RN��>&/6@>&/6@
7RN�
� �>6(3@��� 7RN�

1
7RN�
� ��� 7RN

0

6HQWHQFH��

���

6HQWHQFH��

Figure 7: Fine-tuning BERT for single sentence classification by adding a layer on top of the
contextualized [CLS] token representation. Reproduced from BERT paper [1]

Dataset Description

The verbal arithmetic dataset contains pairs of input sentence and label. The label is tertiary. Label
0, 1, 2 mean the input expressions are evaluated as “negative” , “zero”, and “positive” respectively.
Note that the size of training dataset is 640 and the size of test dataset is 160. In our dataset, we
only have sentences with three word tokens as the input, similar to the examples shown below:

Input expression Label Label meaning

eighteen minus eighteen 1 “zero”
four plus seven 2 “positive”
four minus ten 0 “negative”

Questions:

1. [1pt] Classifier layer. Open the notebook https://colab.research.google.com/github/

csc413-uoft/2021/blob/master/assets/assignments/bert_and_gpt.ipynb, we have pro-
vided two example BERT classes:

BertCSC413 Linear and BertCSC413 MLP that both add a classifier for classification.

In this part, you need to make your own GPTCSC413 class to add a classifier for the GPT
model. You can follow the examples in BERT to similarly add either a linear layer or MLP
layers.

18

https://colab.research.google.com/github/csc413-uoft/2021/blob/master/assets/assignments/bert_and_gpt.ipynb
https://colab.research.google.com/github/csc413-uoft/2021/blob/master/assets/assignments/bert_and_gpt.ipynb

CSC413/2516 Winter 2021 with Professor Jimmy Ba & Bo Wang Programming Assignment 3

2. [0pt] In the notebook, we instantiated two different BERT models from BertCSC413 MLP
class, which are called model freeze bert and model finetune bert in the notebook. Run the
training and evaluation functions to train both models.

Comment on how these two models will differ during the training? Which one would lead to
smaller training errors? Which one would generalize better? And briefly discuss why models
are failing under certain target labels.

3. [0pt] We instantiated a GPT model from GPTCSC413 class, which is called model finetune gpt
in the notebook. Run the training and evaluation functions for the model.

Compare the performance of model finetune bert and model finetune gpt. Try a few unseen
examples of arithmetic questions using both model, and find 10 interesting results. The
interesting results can, for example, be both successful extrapolation/interpolation results or
surprising failure cases.

4. [1pt] Come up with 1 scenario/application that GPT architecture is more preferred than
BERT. The proposed scenario/appication is not limited to sentiment classification or Natual
Language Processing (NLP).

5. [0pt] This is an open question, and we will give full marks as long as you show an attempt
to try one of the following tasks. [1] Try data augmentation tricks to improve the
performances for certain target labels that models were failing to predict. [2] Make a t-sne or
PCA plot to visualize the embedding vectors of word tokens related to arithmetic expressions.
[3] Try different hyperparameter tunings. E.g. learning rates, optimizer, architecture of the
classifier, training epochs, and batch size. [4] Evaluate the Multi-class Matthews correlation
score for our imbalanced test dataset. [5] Run a baseline model using MLP without pre-
trained BERT or GPT. You can assume the sequence length of all the data is 3 in this case.

Deliverables:

• Description of how you build the sentence classifier and make sure it works in the training in
question 3. Your answer should be one sentence. [1pt]

• Two training error curves with “freeze” and “fine-tuned” models. Two tables or lists that
show the test performance with trained “freeze” and “fine-tuned” models. Your qualitative
answer for question 2. Your answer should not exceed 4 sentences [0pt]

• 10 inference results as well as brief comments on why they are interesting or representative
results. Your answer should not exceed 3 sentences, you don’t need to describe all 10
inference results [0pt]

• Description of the scenario/application and the reason GPT is preferred. Your answer should
not exceed 3 sentences. [1pt]

19

CSC413/2516 Winter 2021 with Professor Jimmy Ba & Bo Wang Programming Assignment 3

• Explanation of what you did for the open question and some preliminary results. Your answer
should not exceed 4 sentences. [0pt]

What you need to submit

• Two code files: nmt.ipynb, bert_and_gpt.ipynb.

• A PDF document titled a3-writeup.pdf containing your answers to the conceptual questions.

References

[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics.

[2] Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser,
and Noam Shazeer. Generating wikipedia by summarizing long sequences. arXiv preprint
arXiv:1801.10198, 2018.

[3] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. 2018.

[4] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-
tion Processing Systems, pages 5998–6008, 2017.

[6] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by
watching movies and reading books. In Proceedings of the IEEE international conference on
computer vision, pages 19–27, 2015.

20

