
CSC413/2516 Winter 2021 with Prof. Jimmy Ba and Bo Wang Programming Assignment 2

Programming Assignment 2: Convolutional Neural Networks

Version: 1.1
Changes by Version:

• (v1.1) Updated to new due date Feb. 28th.

Version Release Date: 2021-02-21
Due Date: Sunday, Feb. 28th, at 11:59pm
Based on an assignment by Lisa Zhang

Submission: You must submit 2 files through MarkUs1: a PDF file containing your writeup, titled
a2-writeup.pdf, and your code file a2-cnn.ipynb. Your writeup must be typed.

The programming assignments are individual work. See the Course Information handout2 for de-
tailed policies.

You should attempt all questions for this assignment. Most of them can be answered at least par-
tially even if you were unable to finish earlier questions. If you think your computational results
are incorrect, please say so; that may help you get partial credit.

The teaching assistants for this assignment are Alexey Strokach and Yun-Chun Chen. Send your
email with subject “[CSC413] PA2 ...” to csc413-2021-01-tas@cs.toronto.edu or post on Piazza
with the tag pa2.

Introduction

This assignment will focus on the applications of convolutional neural networks in various image
processing tasks. The starter code is provided as a Python Notebook on Colab (https://colab.
research.google.com/github/csc413-uoft/2021/blob/master/assets/assignments/a2_cnn.

ipynb). First, we will train a convolutional neural network for a task known as image colourization.
Given a greyscale image, we will predict the colour at each pixel. This a difficult problem for many
reasons, one of which being that it is ill-posed: for a single greyscale image, there can be multiple,
equally valid colourings. In the second half of the assignment, we will perform fine-tuning on a
pre-trained semantic segmentation model. Semantic segmentation attempts to clusters the areas of
an image which belongs to the same object (label), and treats each pixel as a classification problem.
We will fine-tune a pre-trained conv net featuring dilated convolution to segment flowers from the
Oxford17 flower dataset3.

1https://markus.teach.cs.toronto.edu/csc413-2021-01
2https://csc413-uoft.github.io/2021/assets/misc/syllabus.pdf
3http://www.robots.ox.ac.uk/~vgg/data/flowers/17/

1

mailto:csc413-2021-01-tas@cs.toronto.edu
https://colab.research.google.com/github/csc413-uoft/2021/blob/master/assets/assignments/a2_cnn.ipynb
https://colab.research.google.com/github/csc413-uoft/2021/blob/master/assets/assignments/a2_cnn.ipynb
https://colab.research.google.com/github/csc413-uoft/2021/blob/master/assets/assignments/a2_cnn.ipynb
https://markus.teach.cs.toronto.edu/csc413-2021-01
https://csc413-uoft.github.io/2021/assets/misc/syllabus.pdf
http://www.robots.ox.ac.uk/~vgg/data/flowers/17/


CSC413/2516 Winter 2021 with Prof. Jimmy Ba and Bo Wang Programming Assignment 2

Image Colourization as Classification

In this section, we will perform image colourization using three convolutional neural networks
(Figure 1). Given a grayscale image, we wish to predict the color of each pixel. We have provided
a subset of 24 output colours, selected using k-means clustering4. The colourization task will be
framed as a pixel-wise classification problem, where we will label each pixel with one of the 24
colours. For simplicity, we measure distance in RGB space. This is not ideal but reduces the
software dependencies for this assignment.

We will use the CIFAR-10 data set, which consists of images of size 32x32 pixels. For most
of the questions we will use a subset of the dataset. The data loading script is included with the
notebooks, and should download automatically the first time it is loaded.

Helper code for Part A is provided in a2-cnn.ipynb, which will define the main training loop
as well as utilities for data manipulation. Run the helper code to setup for this question and answer
the following questions.

Part A: Pooling and Upsampling (2 pts)

1. Complete the model PoolUpsampleNet, following the diagram in Figure 1a. Use the Py-
Torch layers nn.Conv2d, nn.ReLU, nn.BatchNorm2d, nn.Upsample, and nn.MaxPool2d. Your
CNN should be configurable by parameters kernel, num in channels, num filters, and
num colours. In the diagram, num in channels, num filters and num colours are denoted
NIC, NF and NC respectively. Use the following parameterizations (if not specified, assume
default parameters):

• nn.Conv2d: The number of input filters should match the second dimension of the input
tensor (e.g. the first nn.Conv2d layer has NIC input filters). The number of output
filters should match the second dimension of the output tensor (e.g. the first nn.Conv2d
layer has NF output filters). Set kernel size to parameter kernel. Set padding to the
padding variable included in the starter code.

• nn.BatchNorm2d: The number of features should match the second dimension of the
output tensor (e.g. the first nn.BatchNorm2d layer has NF features).

• nn.Upsample: Use scaling factor = 2.

• nn.MaxPool2d: Use kernel size = 2.

Note: grouping layers according to the diagram (those not separated by white space) using
the nn.Sequential containers will aid implementation of the forward method.

4https://en.wikipedia.org/wiki/K-means_clustering

2

https://en.wikipedia.org/wiki/K-means_clustering


CSC413/2516 Winter 2021 with Prof. Jimmy Ba and Bo Wang Programming Assignment 2

Image

Conv2d 

BatchNorm2d 

ReLU

MaxPool2d 

Conv2d 

BatchNorm2d 

ReLU

MaxPool2d 

Conv2d 

BatchNorm2d 

ReLU

Upsample 

Conv2d 

BatchNorm2d 

ReLU

Upsample 

Conv2d 

[BS, NIC, 32, 32]

[BS, NF, 16, 16]

[BS, 2NF, 8, 8]

[BS, NF, 16, 16]

[BS, NC, 32, 32]

[BS, NC, 32, 32]

(a) PoolUpsampleNet

Image

Conv2d 

[BS, NIC, 32, 32]

BatchNorm2d 

ReLU

Conv2d 

BatchNorm2d 

ReLU

ConvTranspose2d 

BatchNorm2d 

ReLU

ConvTranspose2d 

BatchNorm2d 

ReLU

Conv2d 

[BS, NF, 16, 16] 

[BS, 2NF, 8, 8]

[BS, NF, 16, 16]

[BS, NC, 32, 32]

[BS, NC, 32, 32]

(b) ConvTransposeNet

Image

Conv2d 

[BS, NIC, 32, 32]

BatchNorm2d 

ReLU

Conv2d 

BatchNorm2d 

ReLU

ConvTranspose2d 

BatchNorm2d 

ReLU

ConvTranspose2d 

BatchNorm2d 

ReLU

Conv2d 

[BS, NF, 16, 16] 

[BS, 2NF, 8, 8]

[BS, NF + NF, 16, 16]

[BS, NIC + NC, 32, 32]

[BS, NC, 32, 32]

(c) UNet

Figure 1: Three network architectures that we will be using for image colourization. Numbers
inside square brackets denote the shape of the tensor produced by each layer: BS: batch size,
NIC: num in channels, NF: num filters, NC: num colours.

3



CSC413/2516 Winter 2021 with Prof. Jimmy Ba and Bo Wang Programming Assignment 2

2. Run main training loop of PoolUpsampleNet. This will train the CNN for a few epochs using
the cross-entropy objective. It will generate some images showing the trained result at the
end. Do these results look good to you? Why or why not?

3. Compute the number of weights, outputs, and connections in the model, as a function of NIC,
NF and NC. Compute these values when each input dimension (width/height) is doubled.
Report all 6 values.

Part B: Strided and Transposed Convolutions (3 pts)

For this part, instead of using nn.MaxPool2d layers to reduce the dimensionality of the tensors, we
will increase the step size of the preceding nn.Conv2d layers, and instead of using nn.Upsample

layers to increase the dimensionality of the tensors, we will use transposed convolutions. Transposed
convolutions aim to apply the same operations as convolutions but in the opposite direction. For
example, while increasing the stride from 1 to 2 in a convolution forces the filters to skip over every
other position as they slide across the input tensor, increasing the stride from 1 to 2 in a transposed
convolution adds “empty” space around each element of the input tensor, as if reversing the skipping
over every other position done by the convolution. Excellent visualizations of convolutions and
transposed convolutions have been developed by Dumoulin and Visin [2018] and can be found on
their GitHub page5.

1. Complete the model ConvTransposeNet, following the diagram in Figure 1b. Use the Py-
Torch layers nn.Conv2d, nn.ReLU, nn.BatchNorm2d and nn.ConvTranspose2d. As before,
your CNN should be configurable by parameters kernel, num in channels, num filters,
and num colours. Use the following parameterizations (if not specified, assume default pa-
rameters):

• nn.Conv2d: The number of input and output filters, and the kernel size, should be set
in the same way as Part A. For the first two nn.Conv2d layers, set stride to 2 and set
padding to 1.

• nn.BatchNorm2d: The number of features should be specified in the same way as for
Part A.

• nn.ConvTranspose2d: The number of input filters should match the second dimension
of the input tensor. The number of output filters should match the second dimension
of the output tensor. Set kernel size to parameter kernel. Set stride to 2, and set
both padding and output padding to 1.

2. Train the model for at least 25 epochs using a batch size of 100 and a kernel size of 3. Plot
the training curve, and include this plot in your write-up.

5https://github.com/vdumoulin/conv_arithmetic

4

https://github.com/vdumoulin/conv_arithmetic


CSC413/2516 Winter 2021 with Prof. Jimmy Ba and Bo Wang Programming Assignment 2

3. How do the result compare to Part A? Does the ConvTransposeNet model result in lower
validation loss than the PoolUpsampleNet? Why may this be the case?

4. How would the padding parameter passed to the first two nn.Conv2d layers, and the padding
and output padding parameters passed to the nn.ConvTranspose2d layers, need to be mod-
ified if we were to use a kernel size of 4 or 5 (assuming we want to maintain the shapes of all
tensors shown in Figure 1b)?

Note: PyTorch documentation for nn.Conv2d6 and nn.ConvTranspose2d7 includes equations
that can be used to calculate the shape of the output tensors given the parameters.

5. Re-train a few more ConvTransposeNet models using different batch sizes (e.g., 32, 64, 128,
256, 512) with a fixed number of epochs. Describe the effect of batch sizes on the train-
ing/validation loss, and the final image output quality. You do not need to attach the final
output images.

Part C: Skip Connections (1 pts)

A skip connection in a neural network is a connection which skips one or more layer and connects
to a later layer. We will introduce skip connections to the model we implemented in Part B.

1. Add a skip connection from the first layer to the last, second layer to the second last, etc.
That is, the final convolution should have both the output of the previous layer and the
initial greyscale input as input (see Figure 1c). This type of skip-connection is introduced
by Ronneberger et al. [2015], and is called a “UNet”. Following the ConvTransposeNet class
that you have completed, complete the init and forward methods of the UNet class in
Part C of the notebook.

Hint: You will need to use the function torch.cat.

2. Train the model for at least 25 epochs using a batch size of 100 and a kernel size of 3. Plot
the training curve, and include this plot in your write-up.

3. How does the result compare to the previous model? Did skip connections improve the
validation loss and accuracy? Did the skip connections improve the output qualitatively?
How? Give at least two reasons why skip connections might improve the performance of our
CNN models.

6https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
7https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html

5

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html


CSC413/2516 Winter 2021 with Prof. Jimmy Ba and Bo Wang Programming Assignment 2

Image Segmentation as Classification

In the previous two parts, we worked on training models for image colourization. Now we will
switch gears and perform semantic segmentation by fine-tuning a pre-trained model.

Semantic segmentation can be considered as a pixel-wise classification problem where we need
to predict the class label for each pixel. Fine-tuning is often used when you only have limited
labeled data.

Here, we take a pre-trained model on the Microsoft COCO [Lin et al., 2014] dataset and fine-
tune it to perform segmentation with the classes it was never trained on. To be more specific, we
use deeplabv3 [Chen et al., 2017]8 pre-trained model and fine-tune it on the Oxford17 [Nilsback
and Zisserman, 2008] flower dataset.

We simplify the task to be a binary semantic segmentation task (background and flower). In the
following code, you will first see some examples from the Oxford17 dataset and load the finetune
the model by truncating the last layer of the network and replacing it with a randomly initialized
convolutional layer. Note that we only update the weights of the newly introduced layer.

Part D.1: Fine-tune Semantic Segmentation Model with Cross Entropy Loss (2
pts)

1. For this assignment, we want to fine-tune only the last layer in our downloaded deeplabv3.
We do this by keeping track of weights we want to update in learned parameters.

Use the PyTorch utility Model.named parameters()9, which returns an iterator over all the
weight matrices of the model.
The last layer weights have names prefix classifier.4. We will select the corresponding
weights then pass them to learned parameters.

Complete the train function in Part D of the notebook by adding 2-3 lines of code where
indicated.

2. For fine-tuning we also want to:

• Use Model.requires grad () to prevent back-prop through all the layers that should
be frozen.

• Replace the last layer with a new nn.Conv2d layer with appropriate input output chan-
nels and kernel sizes. Since we are performing binary segmentation for this assignment,
this new layer should have 2 output channels.
Complete the script in Question 2 of Part D by adding around 2 lines of code and train
the model. What is the best validation mIoU?

8deeplabv3 details: https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/
9See examples at https://pytorch.org/docs/stable/nn.html

6

https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/
https://pytorch.org/docs/stable/nn.html


CSC413/2516 Winter 2021 with Prof. Jimmy Ba and Bo Wang Programming Assignment 2

3. Visualize the predictions by running the helper code provided.

Part D.2: Fine-tune Semantic Segmentation Model with IoU Loss (2 pts)

1. We will change the loss function from cross entropy used in part D.1 to the (soft) IoU loss
[Rahman and Wang, 2016]10. Complete the compute IoU loss function in Part D.2 of the
notebook by adding 2-3 lines of code each where indicated.

Below are the equations for computing the intersection (I), the union (U), and the IoU loss
(LIoU) between the soft prediction (X) and the ground-truth (Y ).

I(X,Y ) =
∑
i,j

X(i, j) · Y (i, j), (1)

U(X,Y ) =
∑
i,j

(X(i, j) + Y (i, j) −X(i, j) · Y (i, j)), (2)

LIoU = 1 − IoU = 1 − I(X,Y )

U(X,Y )
(3)

After you have implemented the function, train the model with the IoU loss. What is the
validation mIoU (mean IoU)? How does this compare with the mIoU when training with the
cross entropy?

2. Visualize the predictions by running the helper code provided.

What you have to submit

For reference, here is everything you need to hand in. See the top of this handout for submission
directions.

• A PDF file titled a2-writeup.pdf containing only the following:

– Answers to questions from Part A

∗ Q1 code for model PoolUpsampleNet (screenshot or text)

∗ Q2 visualizations and your commentary

∗ Q3 answer (6 values as function of NIC, NF, NC)

– Answers to questions from Part B

∗ Q1 code for model ConvTransposeNet (screenshot or text)

∗ Q2 answer: 1 plot figure (training/validation curves)

10See the definition of IoU loss in Eq (5) of https://www.cs.umanitoba.ca/~ywang/papers/isvc16.pdf

7

https://www.cs.umanitoba.ca/~ywang/papers/isvc16.pdf


CSC413/2516 Winter 2021 with Prof. Jimmy Ba and Bo Wang Programming Assignment 2

∗ Q3 answer

∗ Q4 answer

∗ Q5 answer

– Answers to questions from Part C

∗ Q1 code for model UNet (screenshot or text)

∗ Q2 answer: 1 plot figure (training/validation curves)

∗ Q3 answer

– Answers to questions from Part D.1

∗ Q1 code for train (screenshot or text)

∗ Q2 code for fine-tuning, and answer best validation mIOU

∗ Q3 answer: visualization of predictions

– Answers to questions from Part D.2

∗ Q1 code for compute IoU loss and fine-tuning (screenshot or text), and answer best
validation mIOU with comparison to D.1

∗ Q2 answer: visualization of predictions

• Your code file a2-cnn.ipynb

References

Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning, 2018.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pages 234–241. Springer, 2015.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pages 740–755. Springer, 2014.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing,
pages 722–729. IEEE, 2008.

Md Atiqur Rahman and Yang Wang. Optimizing intersection-over-union in deep neural networks for
image segmentation. In International symposium on visual computing, pages 234–244. Springer,
2016.

8


