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Programming Assignment 1: Learning Distributed Word Repre-
sentations

Version: 1.2
Changes by Version:

e (v1.1) Page 2, the matrix X € NV*V, In 2.1, added constraint that V >> H > D > N and
clarified part of the model.

e (v1.2) In 3.1, fixed typo for partial derivative 9C /02y, ;, not C/0z7.

Version Release Date: 2021-01-30
Due Date: Thursday, Feb. 4, at 11:59pm
Based on an assignment by George Dahl

Submission: You must submit two files through MarkUsﬂ (1) a PDF file containing your writeup,
titled al-writeup.pdf, which will be an export of the iPython notebook, and (2) your code file
al-code.ipynb. There will be sections in the notebook for you to write your responses. Your
writeup must be typed. There will be sections in the notebook for you to write your responses.
Make sure that the relevant outputs (e.g. print_gradients() outputs, plots, etc.) are included
and clearly visible.

The programming assignments are individual work. See the Course Information handouiﬂ for de-
tailed policies.

You should attempt all questions for this assignment. Most of them can be answered at least par-
tially even if you were unable to finish earlier questions. If you think your computational results
are incorrect, please say so; that may help you get partial credit.

The teaching assistants for this assignment are Harris Chan and Summer Tao. Send your email
with subject “/CSC/13] PA1 ...” to csc413-2021-01-tas@cs.toronto.edu/ or post on Piazza with the
tag pal.

Introduction

In this assignment we will learn about word embeddings and make neural networks learn about
words. We could try to match statistics about the words, or we could train a network that takes a
sequence of words as input and learns to predict the word that comes next.

"https://markus.teach.cs.toronto.edu/csc413-2021-01/main
Zhttps://csc4l13-uoft.github.io/2021/assets/misc/syllabus.pdf
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This assignment will ask you to implement a linear embedding and then the backpropagation
computations for a neural language model and then run some experiments to analyze the learned
representation. The amount of code you have to write is very short but each line will require you
to think very carefully. You will need to derive the updates mathematically, and then implement
them using matrix and vector operations in NumPy.

Starter code and data

The starter code is at https://colab.research.google.com/github/csc413-uoft/2021/blob/
master/assets/assignments/al-code.ipynb.

The starter helper function will download the specific the dataset from http://www.cs.toronto!
edu/~jba/al_data.tar.gz. Look at the file raw_sentences.txt. It contains the sentences that
we will be using for this assignment. These sentences are fairly simple ones and cover a vocabulary
of only 250 words (+ 1 special [MASK] token word).

We have already extracted the 4-grams from this dataset and divided them into training, vali-
dation, and test sets. To inspect this data, run the following within IPython:

import pickle
data = pickle.load(open(’data.pk’, ’rb’))

Now data is a Python dict which contains the vocabulary, as well as the inputs and targets
for all three splits of the data. data[’vocab’] is a list of the 251 words in the dictionary;
data[’vocab’] [0] is the word with index 0, and so on. data[’train_inputs’] is a 372,500 x 4
matrix where each row gives the indices of the 4 consecutive context words for one of the 372, 500
training cases. The validation and test sets are handled analogously.

Now look at the notebook ipynb file al-code.ipynb, which contains the starter code for the
assignment. Even though you only have to modify a few specific locations in the code, you may
want to read through this code before starting the assignment.

1 Linear Embedding — GLoVe (2pts)

In this section we will be implementing a simplified version of GLoVe |Jeffrey Pennington and
Manning]. Given a corpus with V' distinct words, we define the co-occurrence matrix X € NV*V
with entries X;; representing the frequency of the i-th word and j-th word in the corpus appearing
in the same context - in our case the adjacent words. The co-occurrence matrix can be symmetric
(i.e., Xi; = Xj;) if the order of the words do not matter, or asymmetric (i.e., X;; # Xj;) if we
wish to distinguish the counts for when ¢-th word appears before j-th word. GLoVe aims to find
a d-dimensional embedding of the words that preserves properties of the co-occurrence matrix by


https://colab.research.google.com/github/csc413-uoft/2021/blob/master/assets/assignments/a1-code.ipynb
https://colab.research.google.com/github/csc413-uoft/2021/blob/master/assets/assignments/a1-code.ipynb
http://www.cs.toronto.edu/~jba/a1_data.tar.gz
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representing the i-th word with two d-dimensional vectors w;, w; € R?, as well as two scalar biases
b;, b; € R. This objective can be written as

,
L({wi, Wi, bi, bity) = Y (W] W+ bi+ bj — log X;5)°
ij=1

When the bias terms are omitted and we tie the two embedding vectors w; = w;, then GLoVe
corresponds to finding a rank-d symmetric factorization of the co-occurrence matrix.
1.1 GLoVE Parameter Count [Opt]

Given the vocabulary size V' and embedding dimensionality d, how many trainable parameters does
the GLoVe model have? Note that each word in the vocabulary is associated with 2 embedding
vectors and 2 biases.

. . oL
1.2 Expression for gradient ;- [1pt]
Write the expression for g—v@, the gradient of the loss function L with respect to one parameter

vector w;. The gradient should be a function of w, W, b, b, X with appropriate subscripts (if any).

1.3 Implement the gradient update of GLoVE [1pt]

Implement the gradient update of GLoVe in al-code.ipynb. Look for the ## YOUR CODE HERE
## comment for where to complete the code.

1.4 Effects of embedding dimension [0pt]

Train the both the symmetric and asymmetric GLoVe model with varying dimensionality d. Com-
ment on the results:

1. Which d leads to optimal validation performance for the asymmetric and symmetric models?
2. Why does / doesn’t larger d always lead to better validation error?

3. Which model is performing better, and why?

3We have simplified the objective by omitting the weighting function. For the complete algorithm please see
|Jeffrey Pennington and Manning]
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2 Network architecture (2pts)

In this assignment, we will train a neural language model like the one we covered in lecture and

as in Bengio et al. [2003]. It receives as input 3 consecutive words, and its aim is to predict a

distribution over the next word (the target word). We train the model using the cross-entropy

criterion, which is equivalent to maximizing the probability it assigns to the targets in the training

set. Hopefully it will also learn to make sensible predictions for sequences it hasn’t seen before.
The model architecture is as follows:

Word 4
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The network consists of an input layer, embedding layer, hidden layer and output layer. The
input consists of a sequence of 3 consecutive words, given as integer valued indices. (e.g., the 250
words in our dictionary are arbitrarily assigned integer values from 0 to 249.) The embedding layer
maps each word to its corresponding vector representation. The embedding layer has 3 x D units,
where D is the embedding dimension of a single word. The embedding layer is connected to the
hidden layer, which uses a logistic nonlinearity. The hidden layer in turn is connected to the output
layer. The output layer is a softmax over the V words, where V is the number of words in the
dictionary.

2.1 Number of parameters in neural network model [1pt]

As above, assume in general that we have V words in the dictionary and use the previous N words as
inputs. Suppose we use a D-dimensional word embedding and a hidden layer with H hidden units.
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The trainable parameters of the model consist of 3 weight matrices and 2 sets of biases. What is
the total number of trainable parameters in the model, as a function of V, N, D, H? In the diagram
given above, which part of the model (i.e., word_embbeding_weights, embed_to_hid_weights,
hid_to_output_weights, hid_bias, or output_bias) has the largest number of trainable param-
eters if we have the constraint that V> H > D > N ﬂ Explain your reasoning.

2.2 Number of parameters in n-gram mode [1pt]

Another method for predicting the next words is an n-gram model, which was mentioned in Lecture
3. If we wanted to use an n-gram model with the same context length N as our network, we’d need
to store the counts of all possible (N + 1)-grams. If we stored all the counts explicitly, suppose we
have V' words in the dictionary, how many entries would this table have?

2.3 Comparing neural network and n-gram model scaling [Opt]

How do the parameters in the neural network model scale with the number of context words N
versus how the number of entries in the n-gram model scale with N7

3 Training the Neural Network (3pts)

We will modify the architecture slightly from the previous section, inspired by BERT [Devlin et al.)
2018|. Instead of having only one output, the architecture will now take in N = 4 context words,
and also output predictions for N = 4 words. See Figure [I] for the diagram of this architecture.

During training, we randomly sample one of the N context words to replace with a [MASK]
token. The goal is for the network to predict the word that was masked, at the corresponding
output word position. In practice, this [MASK] token is assigned the index 0 in our dictionary. The
weights W2 = hid_to_output_weights now has the shape NV x H, as the output layer has NV
neurons, where the first V' output units are for predicting the first word, then the next V are for
predicting the second word, and so on. We call this as concatenating output uniits across all word
positions, i.e. the (j + nV)-th column is for the word j in vocabulary for the n-th output word
position. Note here that the softmax is applied in chunks of V as well, to give a valid probability
distribution over the V' Wordsﬂ Only the output word positions that were masked in the input are
included in the cross entropy loss calculation:

B N V. .
€ ==3230 5 (] log ) )
4 n g

4The symbol > means “much greater than”
SFor simplicity we also include the [MASK] token as one of the possible prediction even though we know the target
should not be this token
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Where yT(Z)J denotes the output probability prediction from the neural network for the i-th training
(4)

ny is 1 if for the i-th training example,

example for the word j in the n-th output word, and ¢
the word j is the n-th word in context. Finally, mg) € {0,1} is a mask that is set to 1 if we are
predicting the n-th word position for the i-th example (because we had masked that word in the

input), and 0 otherwise.
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Loss
A
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Figure 1: Modified architecture with N words output. During training, we mask out one of the
input words by replacing it with a [MASK] token, and try to predict the masked out word in the
corresponding position in the output. Only that output position is used in the cross entropy loss.

In this part of the assignment, you will implement a method which computes the gradient using
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backpropagation. To start you out, the Model class contains several important methods used in
training:

e compute_activations computes the activations of all units on a given input batch
e compute_loss computes the total cross-entropy loss on a mini-batch
e ecvaluate computes the average cross-entropy loss for a given set of inputs and targets

You will need to complete the implementation of two additional methods which are needed for
training, and print the outputs of the gradients.

3.1 Implement gradient with respect to output layer inputs [1pt]

compute_loss_derivative computes the derivative of the loss function with respect to the output
layer inputs. In other words, if C is the cost function, and the softmax computation for the j-th
word in vocabulary for the n-th output word position is:

ecn.,j

ym] = Zl esz (2)

This function should compute a B x NV matrix where the entries correspond to the partial
derivatives 0C/0zy, j. Recall that the output units are concatenated across all positions, i.e. the
(j + nV)-th column is for the word j in vocabulary for the n-th output word position.

3.2 Implement gradient with respect to parameters [1pt]

back_propagate is the function which computes the gradient of the loss with respect to model pa-
rameters using backpropagation. It uses the derivatives computed by compute_loss_derivative.
Some parts are already filled in for you, but you need to compute the matrices of derivatives for
embed_to_hid_weights, hid_bias, hid_to_output_weights, and output_bias. These matrices
have the same sizes as the parameter matrices (see previous section).

In order to implement backpropagation efficiently, you need to express the computations in terms
of matrix operations, rather than for loops. You should first work through the derivatives on pencil
and paper. First, apply the chain rule to compute the derivatives with respect to individual units,
weights, and biases. Next, take the formulas you’ve derived, and express them in matrix form. You
should be able to express all of the required computations using only matrix multiplication, matrix
transpose, and elementwise operations — no for loops! If you want inspiration, read through the
code for Model . compute_activations and try to understand how the matrix operations correspond
to the computations performed by all the units in the network.
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3.3 Print the gradients [1pt]

To make your life easier, we have provided the routine check_gradients, which checks your gra-
dients using finite differences. You should make sure this check passes before continuing with the
assignment. Once check_gradients passes, call print_gradients and include its output in your
write-up.

3.4 Run model training [0 pt]

Once you've implemented the gradient computation, you’ll need to train the model. The function
train in al-code.ipynb implements the main training procedure. It takes two arguments:

e embedding_dim: The number of dimensions in the distributed representation.
e num_hid: The number of hidden units
For example, execute the following:
model = train(16, 128)

As the model trains, the script prints out some numbers that tell you how well the training is going.
It shows:

e The cross entropy on the last 100 mini-batches of the training set. This is shown after every
100 mini-batches.

e The cross entropy on the entire validation set every 1000 mini-batches of training.

At the end of training, this function shows the cross entropies on the training, validation and test
sets. It will return a Model instance.

4 Arithmetics and Analysis (2pts)

In this part, you will perform arithmetic calculations on the word embeddings learned from previous
models and analyze the representation learned by the networks with t-SNE plots.

4.1 tSNE [1pt]

You will first train the models discussed in the previous sections; you’ll use the trained models for
the remainder of this section.

Important: if you’ve made any fixes to your gradient code, you must reload the notebook and
then re-run the training procedure. Python does not reload modules automatically, and you don’t
want to accidentally analyze an old version of your model.

These methods of the Model class can be used for analyzing the model after the training is
done.
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e tsne_plot_representation creates a 2-dimensional embedding of the distributed represen-
tation space using an algorithm called t-SNE [Maaten and Hinton, 2008]. You don’t need
to know what this is for the assignment, but we may cover it later in the course. Nearby
points in this 2-D space are meant to correspond to nearby points in the 16-D space. From

the learned model, you can create pictures that look like this:

e display_nearest_words lists the words whose embedding vectors are nearest to the given

word

e word_distance computes the distance between the embeddings of two words
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Using these methods, please answer the following question.

1. Plot the 2-dimensional visualization for the trained model from part 3 using the method
Look at the plot and find a few clusters of related words.

tsne_plot_representation.

What do the words in each cluster have in common? Plot the 2-dimensional visualization for
the GloVe model from part 1 using the method tsne_plot_GLoVe_representation. How
do the t-SNE embeddings for both models compare? Plot the 2-dimensional visualization
using the method plot_2d_GLoVe_representation. How does this compare to the t-SNE
embeddings? Please answer in 2 sentences for each question and show the plots in your
submission. [1pt]

10

15

Assignment 1
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king female queen
m}'a\ \m}’ai
man female ~ woman

Figure 2: We approximately obtain the vector for queen by displacing the vector for woman by the
difference of vector from man to king. Figure reproduced from [Ethayarajh et al., [2018§]

4.2 Word Analogy Arithmetic [1pt]

A word analogy f is an invertible transformation that holds over a set of ordered pairs S iff V(z, y) €
s, f(x) =y A fHy) = x. When f is of the form  — = + r , it is a linear word analogy.
Arithmetic operators can be applied to vectors generated bilanguage models. There is a famous

example: king — man + women ~ queen. As shown in Figure 2], these linear word analogies form a
parallelogram structure in the vector space |[Ethayarajh et al 2018].

In this section, we will explore a property of linear word analogies. A linear word analogy
holds exactly over a set of ordered word pairs S iff || X — ¥ |2 is the same for every word pair,
| @ — X |?=|| b — ¥ ||? for any two word pairs, and the vectors of all words in S are coplanar.

We will use the embeddings from the symmetric, asymmetrical GloVe model, and the neural net-
work model from part 3 to perform arithmetics. The method to perform the arithmetic and retrieve
the closest word embeddings is provided in the notebook using the method find_word_analogy.
Please answer the following questions:

4.2.1 Specific example [1pt]

Perform arithmetic on words he, him, her, using: (1) symmetric, (2) averaging asymmetrical GloVe
embedding, (3) concatenating asymmetrical GloVe embedding, and (4) neural network word em-
bedding from part 3. That is, we are trying to find the closet word embedding vector to the vector
emb(he) — emb(him) + emb(her). For each sets of embeddings, you should list out: (1) what the
closest word that is not one of those three words, and (2) the distance to that closest word. Is the
closest word she? Compare the results with the tSNE plots.

11
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4.2.2 Finding another Quadruplet [Opt]

Pick another quadruplet from the vocabulary which displays the parallelogram property (and also
makes sense sementically) and repeat the above proceduces. Compare and comment on the results
from arithmetic and tSNE plots.

What you have to submit

For reference, here is everything you need to hand in. See the top of this handout for submission
directions.

e A PDF file titled al-writeup.pdf containing the following:

— Part 1: Questions 1.1, 1.2, 1.3, 1.4. Completed code for grad_GLoVE() function.
— Part 2: Questions 2.1, 2.2, 2.3.

— Part 3: Completed code for compute_loss_derivative() (3.1), back_propagate()
(3.2) functions, and the output of print_gradients() (3.3)

— Part 4: Questions 4.1, 4.2.1, 4.2.2

e Your code file al-code.ipynb
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