
CSC413/2516 Winter 2021 with Professor Jimmy Ba & Professor Bo Wang Homework 1

Homework 1

Version: 1.3
Version Release Date: 2021-01-22
Changes by Version: (v1.1) g2 = h� g1, same assumptions for 1.2 as 1.1

(v1.2) softmax(y) = exp(y)∑N
i=1 exp(yi)

. Clarify structure and output of 1.2. Explicitly mention allowing

big O notation in Section 2.2.2.
(v1.3) Changed ”time” to explicitly say ”number of scalar multiplications”.
We should have added a 1

2 to the L in 2.2 or a 2 to the vv>y in 2.3 to be consistent. You will
get full marks for any of the following: (a) using the existing statements, (b) changing 2.2 to
L(x) = 1

2x
>vv>x, or (c) changing 2.3 to z = 2vv>y

Deadline: Thursday, Jan.28, at 11:59pm.

Submission: You must submit your solutions as a PDF file through MarkUs1. You can produce
the file however you like (e.g. LaTeX, Microsoft Word, scanner), as long as it is readable.

See the syllabus on the course website2 for detailed policies. You may ask questions about the
assignment on Piazza3. Note that 10% of the homework mark (worth 1 pt) may be removed for a
lack of neatness.

The teaching assistants for this assignment are Jonathan Lorraine and Mustafa Ammous.
mailto:csc413-2021-01-tas@cs.toronto.edu

1 Hard-Coding Networks

The reading on multilayer perceptrons located at https://csc413-uoft.github.io/2021/assets/
readings/L02a.pdf may be useful for this question.

1.1 Verify Element in List [1pt]

In this problem, you need to find a set of weights and biases for a multilayer perceptron that
determines if an input is in a list of length 3. You receive an input list with three elements
x1, x2, x3, and fourth input x4 where xi ∈ Z. If x4 = xj for j = 1, 2 or 3, the network will out 1,
and 0 otherwise. You may assume all elements in the input list are distinct for simplicity. You will
use the following architecture:

1https://markus.teach.cs.toronto.edu/csc413-2021-01/main
2https://csc413-uoft.github.io/2021/assets/misc/syllabus.pdf
3https://piazza.com/class/kjt32fc0f7y3kb

1

mailto:csc413-2021-01-tas@cs.toronto.edu
https://csc413-uoft.github.io/2021/assets/readings/L02a.pdf
https://csc413-uoft.github.io/2021/assets/readings/L02a.pdf
https://markus.teach.cs.toronto.edu/csc413-2021-01/main
https://csc413-uoft.github.io/2021/assets/misc/syllabus.pdf
https://piazza.com/class/kjt32fc0f7y3kb


CSC413/2516 Winter 2021 with Professor Jimmy Ba & Professor Bo Wang Homework 1

All of the hidden units and the output unit use an indicator activation function:

φ(z) = I(z ∈ [−1, 1]) =

{
1 if z ∈ [−1, 1]
0 otherwise

Please give a set of weights and biases for the network which correctly implements this function.
Your answer should include:

• A 3× 4 weight matrix W(1) for the hidden layer

• A 3-dimensional vector of biases b(1) for the hidden layer

• A 3-dimensional weight vector w(2) for the output layer

• A scalar bias b(2) for the output layer

You do not need to show your work.

1.2 Verify Permutation [1pt]

Describe how to implement a neural network that takes 6 inputs x1, . . . , x6 and verifies if the last
3 elements are a permutation of the first 3 elements. You may assume the elements in each list are
distinct integers for simplicity. Specifically, we want to see if [x1, x2, x3] = [x4, x5, x6]P for some
permutation matrix P. The network should output 1 if it is a permutation, and 0 otherwise. You
may use other element-wise activation functions if you wish.

Describe how to compose smaller, modular networks like the one you made in Section 1.1. You
do not need to explicitly give the weight matrices or biases for the entire function.

1.3 Optional - Perform Sort [0pt]

Describe how to implement a sorting function f̂ : R4 → R4 where f̂(x1, x2, x3, x4) = (x̂1, x̂2, x̂3, x̂4)
where (x̂1, x̂2, x̂3, x̂4) is (x1, x2, x3, x4) in sorted order. In other words, x̂1 ≤ x̂2 ≤ x̂3 ≤ x̂4, and each
x̂i is a distinct xj . Implement f̂ using a feedforward or recurrent neural network with element-
wise activations. You may combine information across nodes via summation as in 1.1, or with
multiplication.

Hint: There are multiple solutions. You could brute-force the answer by attempting to verify
every permutation of the input, or you could implement a more scalable sorting algorithm where
each hidden layer i is the algorithms state at step i.

2 Backpropagation

The reading on backpropagation located at https://csc413-uoft.github.io/2021/assets/readings/
L02b.pdf may be useful for this question.

2

https://csc413-uoft.github.io/2021/assets/readings/L02b.pdf
https://csc413-uoft.github.io/2021/assets/readings/L02b.pdf


CSC413/2516 Winter 2021 with Professor Jimmy Ba & Professor Bo Wang Homework 1

2.1

Consider a neural network defined with the following procedure:

z1 = W(1)x + b(1)

h = ReLU(z1)

z2 = W(2)x + b(2)

g1 = σ(z2)

g2 = h� g1

y = W(3)g2 + b(3),

y′ = softmax(y)

S =
N∑
k=1

I(t = k) log(y′k)

J = −S

for input x with class label t where ReLU(z) = max(z, 0) denotes the ReLU activation function,
σ(z) = 1

1+e−z denotes the Sigmoid activation function, both applied elementwise, and softmax(y) =
exp(y)∑N

i=1 exp(yi)
. Here, � denotes element-wise multiplication.

2.1.1 Computational Graph [0pt]

Draw the computation graph relating x, t, z1, h, z2, g1, g2, y, y′, S and J .

2.1.2 Backward Pass [1pt]

Derive the backprop equations for computing x̄ = ∂J
∂x , one variable at a time, similar to the

vectorized backward pass derived in Lec 2.

2.2 Automatic Differentiation

Consider the function L : Rn → R where L(x) = x>vv>x, and v ∈ Rn×1 and x ∈ Rn×1. Here, we
will explore the relative costs of evaluating Jacobians and vector-Jacobian products. Specifically,
we will study vector-Hessian products, which is a special case of vector-Jacobian products, where
the Jacobian is of the gradient of our function. We denote the gradient of L with respect to x as
g ∈ R1×n and the Hessian of L w.r.t. x with H ∈ Rn×n. The Hessian of L w.r.t. x is defined as:

H =


∂2L
∂x2

1

∂2L
∂x1∂x2

· · · ∂2L
∂x1∂xn

∂2L
∂x2∂x1

∂2L
∂x2

2
· · · ∂2L

∂x2∂xn

...
...

. . .
...

∂2L
∂xn∂x1

∂2L
∂xn∂x2

· · · ∂2L
∂x2

n


2.2.1 Compute Hessian [0pt]

Compute H for n = 3 and v> = [4, 2, 3] at x> = [1, 2, 3]. In other words, write down the numbers
in:

3



CSC413/2516 Winter 2021 with Professor Jimmy Ba & Professor Bo Wang Homework 1

H =


∂2L
∂x2

1

∂2L
∂x1∂x2

∂2L
∂x1∂x3

∂2L
∂x2∂x1

∂2L
∂x2

2

∂2L
∂x2∂x3

∂2L
∂x3∂x1

∂2L
∂x3∂x2

∂2L
∂x2

3


2.2.2 Computation Cost [1pt]

What is the number of scalar multiplications and memory cost to compute the Hessian H in terms
of n? You may use big O notation.

2.3 Vector-Hessian Products [1pt]

Compute z = Hy = vv>y where n = 3, v> = [1, 2, 3], y> = [1, 1, 1] using two algorithms:
reverse-mode and forward-mode autodiff.

In backpropagation (also known as reverse-mode autodiff), you will compute M = v>y first,
then compute vM. Whereas, in forward-mode, you will compute H = vv> then compute Hy.

Write down the numerical values of zT = [z1, z2, z3] for the given v and y. What is the number
of scalar multiplications and memory cost in evaluating z with backpropagation (reverse-mode) in
terms of n? What about forward-mode?

2.4 Trade-off of Reverse- and Forward-mode Autodiff [1pt]

Consider computing Z = Hy1y
>
2 where v ∈ Rn×1,y1 ∈ Rn×1 and y2 ∈ Rm×1. What are number

of scalar multiplications and memory cost in evaluating Z with reverse-mode in terms of n and m?
What about forward-mode? When is forward-mode a better choice? (Hint: Think about the shape
of Z, “tall” v.s. “wide”.)

3 Linear Regression

The reading on linear regression located at https://csc413-uoft.github.io/2021/assets/readings/
L01a.pdf may be useful for this question.

Given n pairs of input data with d features and scalar label (xi, ti) ∈ Rd × R, we wish to
find a linear model f(x) = ŵ>x with ŵ ∈ Rd that minimizes the squared error of prediction on
the training samples defined below. This is known as an empirical risk minimizer. For concise
notation, denote the data matrix X ∈ Rn×d and the corresponding label vector t ∈ Rn. The
training objective is to minimize the following loss:

min
ŵ

1

n

n∑
i=1

(ŵ>xi − ti)2 = min
ŵ

1

n
‖Xŵ − t|22.

We assume X is full rank: X>X is invertible when n > d, and XX> is invertible otherwise.
Note that when d > n, the problem is underdetermined, i.e. there are less training samples than
parameters to be learned. This is analogous to learning an overparameterized model, which is
common when training of deep neural networks.

3.1 Deriving the Gradient [0pt]

Write down the gradient of the loss w.r.t. the learned parameter vector ŵ.

4

https://csc413-uoft.github.io/2021/assets/readings/L01a.pdf
https://csc413-uoft.github.io/2021/assets/readings/L01a.pdf


CSC413/2516 Winter 2021 with Professor Jimmy Ba & Professor Bo Wang Homework 1

3.2 Underparameterized Model [1pt]

First consider the underparameterized d < n case. Write down the solution obtained by gradient
descent assuming training converges. Show your work. Is the solution unique?

3.3 Overparameterized Model

3.3.1 [0pt]

Now consider the overparameterized d > n case. We first illustrate that there exist multiple
empirical risk minimizers. For simplicity we let n = 1 and d = 2. Choose x1 = [1; 1] and t1 = 3,
i.e. the one data point and all possible ŵ lie on a 2D plane. Show that there exists infinitely many
ŵ satisfying ŵ>x1 = y1 on a real line. Write down the equation of the line.

3.3.2 [1pt]

Now, let’s generalize the previous 2D case to the general d > n. Show that gradient descent from
zero initialization i.e. ŵ(0) = 0 finds a unique minimizer if it converges. Write down the solution
and show your work.

3.3.3 [1pt]

Visualize and compare underparameterized with overparameterized polynomial regression: https:
//colab.research.google.com/drive/1Atkk9hjUaXV-bDttCxAv9WiMsB6EJTKU. Include your code
snippets for the fit_poly function in the write-up. Does overparameterization (higher degree poly-
nomial) always lead to overfitting, i.e. larger test error?

5

https://colab.research.google.com/drive/1Atkk9hjUaXV-bDttCxAv9WiMsB6EJTKU
https://colab.research.google.com/drive/1Atkk9hjUaXV-bDttCxAv9WiMsB6EJTKU

	Hard-Coding Networks
	Verify Element in List blue[1pt]
	Verify Permutation blue[1pt]
	Optional - Perform Sort [0pt]

	Backpropagation
	
	Computational Graph [0pt]
	Backward Pass blue[1pt]

	Automatic Differentiation
	Compute Hessian [0pt]
	Computation Cost blue[1pt]

	Vector-Hessian Products blue[1pt]
	Trade-off of Reverse- and Forward-mode Autodiff blue[1pt]

	Linear Regression
	Deriving the Gradient [0pt]
	Underparameterized Model blue[1pt]
	Overparameterized Model
	[0pt]
	blue[1pt] 
	blue[1pt]



